Lecture 9 - (Missing notes; derive Pacehek) Next class

Today: origin of magnetic fields

In ideal MHD, flux of magnetic field is constant: \(\oint \mathbf{B} \cdot d\mathbf{S} = \text{const} \)

So if ideal MHD is valid, I can know \(B \) (past), if I know it today.

However, we know that there is dissipation and that generation of \(B \) can happen:

\[
\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{v} \times \mathbf{B}) + \nu \nabla^2 \mathbf{B} - \frac{c}{n e^2} \mathbf{v} e \times \nabla p_e
\]

To calculate the diffusion time:

\[
\frac{\partial \mathbf{B}}{\partial t} - \nu_m \nabla^2 \mathbf{B} \Rightarrow \frac{\mathbf{B} - \nu_m \mathbf{B}}{60} \Rightarrow t_0 \sim \frac{R^2}{\nu_m}
\]

\[
\nu_m = \frac{\eta c^2}{4 \pi} \text{ (Spitzer)} \Rightarrow \nu_m \propto \frac{1}{T^{3/2}}
\]

<table>
<thead>
<tr>
<th>planet</th>
<th>galaxies</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T(K))</td>
<td>1000</td>
</tr>
<tr>
<td>(R^2)</td>
<td>1</td>
</tr>
</tbody>
</table>

So, for Earth: \(T = 300 \text{ K} \Rightarrow R = 1 \text{ m} \)
In the formation of stars, how does B get amplified?

\[n = 10^4 \text{ cm}^{-3} \]
\[B = n \times 10^{-5} \text{ G} \]

\[B \propto r^{-2} \]

\[B_{\text{final}} = B_i \frac{r_i^2}{r_f^2} = 2 \times 10^9 \text{ G} \text{ cannot be} \]

So what happens?

In the global \(r \) if you have conservation of angular momentum

\[\frac{L^2}{\mu} = r^2 \times 7 \text{ if } L = \text{constant} \Rightarrow r = \text{constant} \]

\[r^2 \cdot 2(r) = \text{constant} \]

\[\Rightarrow 2(r) \propto r^{-2} \]

If \(r \) is very small \(B(r) \) is very large. If there is conservation of angular momentum, the centrifugal potential (the high spin of particles spiraling in the direction of a central object) constrains the particles to spiral in the direction of the central object. Conclusion: there is no conservation of total angular momentum.

- Keplerian relation:

\[m \cdot v^2 = \mu \cdot \frac{1}{r} \Rightarrow v^2 = \frac{1}{\frac{1}{\mu} r} \]
As \(L \propto \left| \vec{r} \times \vec{p} \right| \propto r^2 B(r) \propto r^{1/2} \)

- There is transfer of angular momentum to the outside but still doesn't get to the observed values.

- A magnetic field parallel to rotation diminishes the angular momentum.

\[
\vec{F}_\phi = \frac{1}{c} \vec{J} \times \vec{B} = -\frac{\vec{J}_r B_z \phi}{c}
\]

Torque \(\vec{\tau} = \vec{r} \times \vec{F} = -r \vec{J}_r B_z \frac{\vec{L}}{c} = \frac{d\vec{L}}{dt} \)

- Diminish \(L \)

In a collapse: \(\rho \uparrow \rightarrow \) radio pe

- Exist scattering between neutral particles and electrons/ions
- Ambipolar diffusion

So, the magnetic flux is removed from the protostar

\(B \approx 1000 \, G \) (we have calculated \(10^9 \, G \) for ideal MHD)
In the Sun: if we take into account the convection and diffusion, the field will be small.

What is not observed → so there is continuous regeneration of magnetic field!!!

- In convective stars (as the Sun): magnetic field are intense and variables → they are contemporaneous field regeneration

- In radiative stars: without convective motions → fossil magnetic field

→ Two classes of stars:
 A. favor an "original" field
 B. favor creation of magnetic field.

- In galaxies, too → tidal → original field
 When the B was formed?

Parker "B is not the original field in galaxies"

→ turbulent dissipation: anomalous viscosity (\(\nu_A\))
 \(L\) scale of turbulent vortices
General conclusion: not in stars, not in planets and not in galaxies—possess primordial magnetic field. There is advection, dissipation, regeneration.

6.1) Mechanisms of generation of fields

- Differential rotation
- Biermann battery
- Dynamo

Differential Rotation

$\nu = \nu(\rho) \rho$

Ideal MHD: ($\nu_m = 0$); in cylindrical coordinates

\[\frac{\partial B_z}{\partial t} = 0 \]
\[\frac{\partial B_y}{\partial t} - \frac{2ABr}{\partial t} \]

\[A = R \frac{dV}{dr} \]

\[B_p = B_p(t_0) + 2ABr(t - t_0) \]
Spherical Coordinates:

Polar field $B_p = B_r \hat{r} + B_\theta \hat{\theta}$

$B^2 = B_p + B^p$

If $B_p = cte$, then

$B_p \propto \frac{d}{dr} B_p$

So, a field line

Differential rotation: effectively don't create fields, only transform one component to the other. We will see it's important to amplify seed fields in dynamos.

Biermann battery
\[p_e = nek_BT \rightarrow \nabla p_e = n\partial_e k_BT + nek_e \nabla T \]

\[\nabla n_e \times \nabla p_e = (\nabla n_e \times \nabla T) nek_e \]

In a non-rotating body, \(\nabla n_e \parallel \nabla T \) and the term of the Biermann battery is zero.

What if it is rotating?

\[\frac{\rho \nabla \vec{v}}{\partial t} - \rho \frac{\partial \vec{v}}{\partial t} + (\vec{v} \cdot \nabla) \vec{v} = -\nabla p + \rho \vec{g} + \vec{\Omega} \times \vec{B} \]

Hypothesis: azimuthal symmetry (cylindrical coordinates)

\[\theta_t = 0 \]
\[V_t = 0 \]
\[V_\theta = c \theta e \]
\[V_r = 2r \]

we are starting with NO FIELD

Remember: \(\frac{\partial \hat{\phi}}{\partial r} = -\hat{r} \)

Radial component: \((\vec{v} \cdot \hat{r}) \hat{r} = v_r \hat{r} \cdot (V_r \hat{r} + V_\phi \hat{\phi}) = V_r \partial_r v_r + \frac{V_\phi}{r} \phi \)

Azimuthal component: \((\vec{v} \cdot \hat{\phi}) v_\phi = \frac{v_\phi}{r} \frac{\partial \phi}{\partial r} = \frac{V_\phi}{r} V_r \phi \hat{r} - \frac{V_\phi}{r} \hat{r} \phi \)

Radial component of the equation of motion:

\[\frac{\partial}{\partial t} (\rho \vec{v}) + \nabla \cdot (\rho \vec{v} \vec{v}) = -\nabla p + \rho \vec{g} + \vec{\Omega} \times \vec{B} \]
• Azimuthal component of the equation of motion:

\[
\frac{\partial \psi}{\partial t} + \frac{v_r \psi}{r} = - \frac{1}{\rho} \frac{\partial \rho}{\partial t} - \frac{1}{\rho} \frac{\partial \rho}{\partial r} \frac{\partial \psi}{\partial r} - \frac{\partial \psi}{\partial z} = 0
\]

\[
\frac{\partial \psi}{\partial t} = - \frac{1}{\rho} \frac{\partial \rho}{\partial t} \Rightarrow v_r \propto r^{-1} \Rightarrow \mathbf{F} \propto r^{-2}
\]

\[
\frac{\partial \psi}{\partial r}
\]

• Z-component of the equation of motion

\[
\frac{-1}{\rho} \frac{\partial \rho}{\partial t} - \frac{\partial \psi}{\partial z} = 0
\]

(6.2)

2 [6.1] and 2 [6.2]:

\[
\frac{\partial \rho}{\partial r} = \frac{\partial \rho}{\partial z}
\]

\[
-\frac{\partial}{\partial z} \frac{\partial^2 \rho}{\partial z^2} = -\frac{1}{\rho} \frac{\partial \rho}{\partial t} + \frac{1}{\rho} \frac{\partial \rho}{\partial z} \frac{\partial \rho}{\partial r} - \frac{\partial \psi}{\partial z} \frac{\partial \psi}{\partial r} - \frac{\partial \psi}{\partial z} \frac{\partial \psi}{\partial r} \frac{\partial \psi}{\partial r}
\]

\[
\frac{\partial}{\partial z} \left[\frac{\partial \rho}{\partial z} \frac{\partial \rho}{\partial r} - \frac{\partial \rho}{\partial z} \frac{\partial \rho}{\partial r} \right] = \nabla \times \nabla \phi
\]

\[
\frac{\partial^2}{\partial z^2} = \frac{1}{\rho^2} \left[\frac{\partial \rho}{\partial z} \frac{\partial \rho}{\partial r} - \frac{\partial \rho}{\partial z} \frac{\partial \rho}{\partial r} \right] = \frac{\nabla \times \nabla \phi}{\rho^2}
\]
\[\rho = \frac{\vec{\nabla} n_e}{n_e} = \frac{\vec{\nabla} ne}{ne} \]

\[-r \frac{\partial^2 \hat{\rho}}{\partial z^2} = \frac{k_e}{ne} (\vec{\nabla} n_e \times \vec{\nabla} T) \hat{\rho} \]

Because in the battery of Biermann, \(\frac{\partial \vec{B}}{\partial t} = -\frac{c}{ne^2e} (\vec{\nabla} n_e \times \vec{\nabla} pe) = -\frac{c \kappa_e}{ne} (\vec{\nabla} n_e \times \vec{\nabla} T) \)

\[
\frac{\partial \vec{B}}{\partial t} = \frac{c m r}{e} \frac{\partial^2 \hat{\rho}}{\partial r^2}
\]

Creation of magnetic field from nothing \(\Rightarrow \) we need only differential rotation.

\(\nabla \vec{B} \propto \hat{t} \Rightarrow B_y \propto 10^3 G \) for a star.

In the Sun: \(\frac{\partial \mu}{\partial z} \neq 0 \)

\[\frac{\partial}{\partial z} \]

\[\vec{w} \]

\[\vec{w}_0 \]

Dynamo

- In convection stars, dynamo = motion in a flow that amplify
- In conductor fluid, a seed field
- Differential rotation
In stars we will apply this idea — we have already the necessary ingredients: material conductors, rotating system.

- Mechanism of Harrison (1970)

Origin of magnetic field in galaxies

- Photons of CMB interact with electrons and ions.
 - Thompson scattering $\propto m^{-2}$ — it's more efficient for electrons
 - Decoupling of electrons and ions

- Collapse of clouds creates drag forces — the clouds rotate.
 - The ions follow the rotational motion of the clouds, but electrons stay behind because they are more coupled to the photons

$$\mathbf{j}_f = ne \mathbf{e} (V_i - V_e)$$ \{ create & field \}

$$\mathbf{4} \mathbf{j}_f = \mathbf{\nabla} \times \mathbf{B}_P$$

$$\frac{\partial \mathbf{B}_P}{\partial t} = -\mathbf{c} \mathbf{\nabla} \times \mathbf{E}$$

$$\rightarrow \frac{1}{c} \mathbf{\partial} \left(\int \mathbf{B}_P^2 \, d\mathbf{a} \right) = \oint \mathbf{E} \cdot d\mathbf{l}$$

Flux
Field created by the friction of the electrons (generate current and then generate B)

$$\frac{\text{d}N_e}{\text{d}t} = -\frac{\text{d}i}{\text{d}t} + N_e \frac{\text{d}e}{\text{d}t} - N_e e \left(E + \frac{\text{v}_e x B}{c} \right) + \text{Pe} + \text{Pe}$$

$B_p \propto$ affirming that $\text{d}v_e/\text{d}t = 0$

$NeE = \text{Pe}$

$Pe = m_e n_e (\nu_{re}) v_T \sim Ne e E_x$

γ_T: rate of scattering

$\nu_{re} \sim w_r$

$\gamma_T \propto \frac{\text{d} \nu_{re} e \text{c} t}{\nu}$

e_0 density of energy of the radiation field (photons)

$$E_0 = \frac{m_e \nu_{re} w_r e \text{c}^2}{e} \frac{\nu_{\text{c}}}{\nu e} \left(\frac{4}{3} \right)$$

$$B_p \sim \frac{8}{3} \frac{\text{P}_T}{e} \left(\int \nu u \text{d}t \right)$$

\sim Big Bang

Hypothesis: $\lambda = 10$ the galaxies had ν_p equal of what is observed today and the age of the universe was 10^{16} sec, so $\nu = 4 \times 10^9 \text{erg} / \text{cm}^3$
The observed radiation of the Ly α forest is polarized (Faraday rotation), so we can estimate B.

$B_{\text{observed}} \approx 10^{15} \Rightarrow e^{35} \approx e^{nt}$ \hspace{1cm} \text{n: rate of growth of B field.}

In the galaxy - is there a rate of growth of B today? Is $n_{\text{today}} \approx 0$? It's believed that the galaxy is in MHD equilibrium. This gives a value of $B \approx 10^{-6}$ as it is observed.

If $B > 10^{-6}$, $\Rightarrow \Delta z \left(\frac{p+B^2}{8\pi} \right) > 1/4$

If B will grow until today: $n^{-1} \approx 3 \times 10^8$ years.

Because we believe that $n_{\text{today}} \approx 0$, the growth of B stopped in the past $\Rightarrow n^{-1} < 3 \times 10^8$ years.

Mechanism of Vilinkin & Vachaspati.
→ mechanism of Harrison
→ seed field even before \(z = 10 \)

- Mechanism of Turner & Widrow (1988)

In the inflation period \(\rightarrow \) vacuum (change instantaneously) with electric field \(\rightarrow \) create \(B \)

6.2 Types of Dynamos

(I) Homopolar Dynamo
(II) Dynamo of Heisenberg
(III) Dynamo of Zeldovich
(IV) Dynamo of Parker

(I) \(\oint \vec{B} \cdot dl = \frac{I y \vec{n}}{c} \)

\[E = -\frac{\vec{v} \times \vec{B}}{c} = -\frac{\omega r}{c} \frac{\vec{B}(r)}{r} \]

\(V = \oint \frac{\vec{E} \cdot dr}{c} = -\omega \left(r \vec{B} \cdot dr \right) \]

(\(V_0 = \omega r \))

(\(V \) self-induction)