ASTR 390 Astrobiology

Clays, Minerals and the Origin of Life

Prof. Geller

Food for thought...

"It was a dark and stormy night. In the shallow tide pool, a nucleic acid base collided with a sugar molecule. An amino acid sank beneath the murky depths.”

- Eric Chaisson and Steve McMillan, 1992

What I’m Going to Talk About

- What preceded nucleic acids?
- Clay polymers
 - Polycationic polymers
 - Polyanionic polymers
- Time to form “polymer” clays
- Clays and the need for inheritance
- Other minerals and their possible affect on the development of life

Review of Timeline

What preceded nucleic acid?

- Inorganic polymers
 - simpler, more accessible
- Examples of inorganic polymers
 - clays and non-clay minerals
- Clays might have a role in life evolving
- Clays and combinations of clays might have evolved into living system prior to nucleic acid lifeforms
From Gravel to Clay

<table>
<thead>
<tr>
<th>#10 Sieve 2 mm</th>
<th>#200 Sieve 0.075 mm</th>
<th>0.002 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravel</td>
<td>Sand</td>
<td>Silt</td>
</tr>
</tbody>
</table>

Coarse Fraction
Visible to Naked Eye

Fine Fraction
Microscopic

Faujasite Structure

Rocks and Soil Cycle

ROCK → WEATHERING → RESIDUAL SOIL → TRANSPORTING AGENT → TRANSPORTED SOIL

Clay Polymers

- Clays are linked with covalent bonds
 - composed of cationic and anionic polymers
- Polycationic polymers
 - metallic cations pickup hydrogen in water
 - hydrated cations can act as Lewis acids
 - as pH increases, so does tendency to polymerize
 - examples
 - brucite (magnesium type polymer)
 - gibbsite (aluminum type polymer)

Polyanionic polymers
- tendency to form when pH is lower
- silicon is central semi-metal

Metallic polymers form clays
- most minerals are silicates
- 1:1 clay
- 2:1 clay (see Figure 4 in Chapter 20)

A Clay - Kaolinite
Kaolinite and Talc

Montmorillonite

Time to form Clay Polymers
- Covalent bonds are made and broken
- Molecules must be eliminated in process
- Clay polymer growth can be blocked
- Clay polymers more likely to form in higher concentrations of precursors
- Rock weathering adds precursors
- Got to remember that things take time

Clays and inheritance
- Can clays reproduce?
- Can clays transfer information forward?
- Clays do not produce and separate
- Clay minerals possess disorderly arrangements
- Few reactions have been noticed on clays

Other Minerals effects on the Evolution of Life
- Pyrite (iron sulfide) has been known to act as a surface for reactions
- Calcite has been shown to preferentially bond left and right organic molecules
- Clays may act as “catalysts” by holding molecules in place and allow time for chemical bonding of more complex molecules

Pyrite and Calcite
What I Talked About

- What preceded nucleic acids?
- Clay polymers
 - Polycationic polymers
 - Polyanionic polymers
- Time to form “polymer” clays
- Clays and the need for inheritance
- Other minerals and their possible affect on the development of life

References (Books)