Recall What Is in a Nucleus

- The nucleus of an atom is made up of protons and neutrons
- Each is about 2000 times the mass of the electron, and thus constitutes the vast majority of the mass of a neutral atom (equal number of protons and electrons)
- Proton has positive charge; mass = 1.007276 a.m.u.
- Neutron has no charge; mass = 1.008665 a.m.u.
- Proton by itself (hydrogen nucleus) will last forever
- Neutron by itself will "decay" with half-life of ~11 min
- Size of nucleus is about 0.00001 times size of atom
 - Thus, an atom is mostly empty space

Remember that protons and neutrons are themselves made up of quarks

What holds an atom together?

- If like charges repel, and the nucleus is full of protons (positive charges), why doesn't it fly apart?
 - Repulsion is from electromagnetic force
 - At close scales, another force takes over
 - The strong nuclear force
- The strong force operates between quarks
 - Recall that both protons and neutrons are made of quarks
 - The strong force is a short-range force only
 - It is confined to nuclear sizes
 - This binding (strong force) overpowers the charge repulsion

iClicker Question

- Which is closest to the half-life of a neutron?
 - A 5 minutes
 - B 10 minutes
 - C 15 minutes
 - D 20 minutes
 - E 30 minutes

What’s the deal with neutrons decaying?!

- A neutron, which is heavier than a proton, can (and will!) decide to switch to the lower-energy state of the proton
 - Charge is conserved, so it produces an electron too
 - And an anti-neutrino, a chargeless, nearly massless cousin to the electron

Chapter 6 Summary

- History of Nuclear Energy
- Radioactivity
- Nuclear Reactors
- Boiling Water Reactor
- Fuel Cycle
- Uranium Resources
- Environmental and Safety Aspects of Nuclear Energy
- Chernobyl Disaster
- Nuclear Weapons
- Storage of High-Level Radioactive Waste
- Cost of Nuclear Power
- Nuclear Fusion as an Energy Source
- Controlled Thermonuclear Reactions
- A Fusion Reactor
iClicker Question

- What is the force that keeps the nucleus together?
 - A weak force
 - B strong force
 - C electromagnetic force
 - D gravitational force

Insight from the decaying neutron

- Another force, called the weak nuclear force, mediates these "flavor" changes
- Does this mean the neutron is made from an electron and proton?
 - No. It will do you little harm to think of it this way
- Mass-energy conservation:
 - Mass of neutron is 1.008665 a.m.u.
 - Mass of proton plus electron is 1.007276 + 0.000548 = 1.007824
 - Mass-energy difference is 0.000841 a.m.u. (more than the electron mass)
 - in kg: 4.41 x 10^-26 kg = 1.26 x 10^-19 J = 0.783 MeV via $E = mc^2$
 - 1 a.m.u. = 1.6605 x 10^-27 kg
 - 1 eV = 1.602 x 10^-19 J
 - excess energy goes into kinetic energy of particles

iClicker Question

- A neutron decays. It has no electric charge. If a proton (positively charged) is left behind, what other particle must come out if the net charge is conserved?
 - A No other particles are needed.
 - B A negatively charged particle must emerge as well.
 - C A positively charged particle must emerge as well.
 - D Another charge will come out, but it could be either positively charged or negatively charged.
 - E Neutrons cannot exist individually.

Counting particles

- A nucleus has a definite number of protons (Z), a definite number of neutrons (N), and a definite total number of nucleons $A = Z + N$
- example, the most common isotope of carbon has 6 protons and 6 neutrons (denoted ^{12}C; 98.9% abundance)
 - $Z = 6$; $N = 6$; $A = 12$
- another stable isotope of carbon has 6 protons and 7 neutrons (denoted ^{13}C; 1.1% abundance)
 - $Z = 6$; $N = 7$; $A = 13$
- an unstable isotope of carbon has 6 protons and 8 neutrons (denoted ^{14}C; half-life is 5730 years)
 - decays via beta decay to ^{14}N
- Isotopes of an element have same Z, differing N

Full notation

- A fully annotated nucleon symbol has the total nucleon number, A, the proton number, Z, and the neutron number, N positioned around the symbol
 - redundancy in that $A = Z + N$
- Examples:
 - carbon-12: $^{12}\text{C}_6$
 - carbon-14: $^{14}\text{C}_7$
 - uranium-235: $^{235}\text{U}_{92}$
 - uranium-238: $^{238}\text{U}_{92}$
 - plutonium-239: $^{239}\text{Pu}_{94}$

iClicker Question

- How many neutrons in U-235?
 - A 141
 - B 142
 - C 143
 - D 144
 - E 145
Radioactivity

Any time a nucleus spontaneously emits a particle...
- electron through beta (β⁻) decay
 * increase Z by 1; decrease N by 1; A remains the same
- positron (anti-electron) through beta (β⁺) decay
 * decrease Z by 1; increase N by 1; A remains the same
- alpha (α) particle (4He nucleus)
 * decrease Z by 2; decrease N by 2; decrease A by 4
- gamma (γ) ray (high-energy photon of light)
 * Z, N, A unchanged (stays the same nucleus, just loses energy)
- we say it underwent a radioactive transformation
- certain isotopes of nuclei are radioactively unstable
 * they will eventually change flavor by a radioactive particle emission
 * α, β, γ emission constitutes a minor change to the nucleus
 * not as dramatic as splitting the entire nucleus in two large parts

The Physicist's Periodic Table

Chart of the Nuclides

radioactivity Demonstration

- Have a Geiger counter that clicks whenever it detects a gamma ray, beta decay particle, or alpha particle.
 * not 100% efficient at detection, but representative of rate
- Have two sources:
 - ¹⁴C with half life of 5730 years
 * about 4000 β⁻ decays per second in this sample
 * corresponds to 25 ng, or 10¹⁵ particles
 - ⁹⁰Sr with half-life of 28.9 years
 * about 200 α⁻ decays per second in this sample
 * contains about 40 pg (70 billion nuclei; was 450 billion in 1987)
 * produced in nuclear reactor

Natural radioactive dose in mrem/year

<table>
<thead>
<tr>
<th>Source</th>
<th>Sea Level</th>
<th>Denver</th>
</tr>
</thead>
<tbody>
<tr>
<td>cosmic rays</td>
<td>28</td>
<td>55</td>
</tr>
<tr>
<td>terrestrial (rock)</td>
<td>46</td>
<td>90</td>
</tr>
<tr>
<td>Food and water</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>air (mostly radon)</td>
<td>203</td>
<td></td>
</tr>
<tr>
<td>air travel</td>
<td>1 per 1,000 miles traveled</td>
<td></td>
</tr>
<tr>
<td>house</td>
<td>7 if made of stone/brick/concrete</td>
<td></td>
</tr>
<tr>
<td>medical X-ray</td>
<td>40 each (airport X-ray negligible)</td>
<td></td>
</tr>
<tr>
<td>nuclear med. treatment</td>
<td>14 each</td>
<td></td>
</tr>
<tr>
<td>within 50 miles of nuclear plant</td>
<td>0.009</td>
<td></td>
</tr>
<tr>
<td>within 50 miles of coal plant</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>total for no travel/medical</td>
<td>316</td>
<td>387</td>
</tr>
</tbody>
</table>

source: www.epa.gov/radiation/students/calculate.html
iClicker Question

- If a substance has a half-life of 30 years, how much will be left after 90 years?
 - A one-half
 - B one-third
 - C one-fourth
 - D one-sixth
 - E one-eighth

Fission of Uranium

Figure 6.1 Three steps in the neutron-induced fission of \(^{235}\text{U} \). The combination of a neutron and \(^{235}\text{U} \) forms \(^{236}\text{U} \), a highly excited state, that promptly fissions into two lighter nuclei, emitting neutrons and gamma rays in the process.

Barium and Krypton represent just one of many potential outcomes

Fission

- There are only three known nuclides (arrangements of protons and neutrons) that undergo fission when introduced to a slow (thermal) neutron:
 - \(^{233}\text{U} \): hardly used (hard to get/make)
 - \(^{235}\text{U} \): primary fuel for reactors
 - \(^{239}\text{Pu} \): popular in bombs

- Others may split if smacked hard enough by a neutron (or other energetic particle)

How much more fissile is \(^{235}\text{U} \) than \(^{238}\text{U} \)?

Bottom line: at thermal energies (arrow), \(^{235}\text{U} \) is 1000 times more likely to undergo fission than \(^{238}\text{U} \) even when smacked hard

Uranium isotopes and others of interest

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Abundance (%)</th>
<th>half-life</th>
<th>decays by:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^{233}\text{U})</td>
<td>0</td>
<td>159 kyr</td>
<td>(\alpha)</td>
</tr>
<tr>
<td>(^{234}\text{U})</td>
<td>0.0055</td>
<td>246 kyr</td>
<td>(\alpha)</td>
</tr>
<tr>
<td>(^{235}\text{U})</td>
<td>0.720</td>
<td>704 Myr</td>
<td>(\alpha)</td>
</tr>
<tr>
<td>(^{236}\text{U})</td>
<td>0</td>
<td>23 Myr</td>
<td>(\alpha)</td>
</tr>
<tr>
<td>(^{237}\text{U})</td>
<td>0</td>
<td>6.8 days</td>
<td>(\beta)</td>
</tr>
<tr>
<td>(^{238}\text{U})</td>
<td>99.2745</td>
<td>4.47 Gyr</td>
<td>(\alpha)</td>
</tr>
<tr>
<td>(^{239}\text{Pu})</td>
<td>no natural Pu</td>
<td>24 kyr</td>
<td>(\alpha)</td>
</tr>
<tr>
<td>(^{232}\text{Th})</td>
<td>100</td>
<td>14 Gyr</td>
<td>(\alpha)</td>
</tr>
</tbody>
</table>

The Uranium Story

- No isotope of uranium is perfectly stable:
 - \(^{235}\text{U} \) has a half-life of 704 million years
 - \(^{238}\text{U} \) has a half-life of 4.5 billion years (age of earth)

- No heavy elements were made in the Big Bang (just H, He, Li, and a tiny bit of Be)

- Stars only make elements as heavy as iron (Fe) through natural thermonuclear fusion

- Heavier elements made in catastrophic supernovae
 - massive stars that explode after they’re spent on fusion

- \(^{235}\text{U} \) and \(^{238}\text{U} \) initially had similar abundance
Uranium decay
- The natural abundance of uranium today suggests that it was created about 6 billion years ago
 - assumes ^{235}U and ^{238}U originally equally abundant
 - Now have 39.8% of original ^{238}U and 0.29% of original ^{235}U
 - works out to 0.72% ^{235}U abundance today
- Plutonium-239 half-life is too short (24,000 yr) to have any naturally available
- Thorium-232 is very long-lived, and holds primary responsibility for geothermal heat

Why uranium?
- Why mess with “rare-earth” materials? Why not force lighter, more abundant nuclei to split?
 - only three “slow-neutron” fissile nuclei are known, what about this “smacking” business?
- Turns out, you would actually lose energy in splitting lighter nuclei
- Iron is about the most tightly bound of the nuclides
 - and it’s the release of binding energy that we harvest
 - so we want to drive toward iron to get the most out

iClicker Question
- Basically, what is the nature of the alpha particle?
 - A an electron
 - B a proton
 - C a helium nucleus
 - D a uranium nucleus
 - E an iron nucleus

iClicker Question
- Basically, what is the nature of the beta particle?
 - A an electron
 - B a proton
 - C a helium nucleus
 - D a uranium nucleus
 - E an iron nucleus

Binding energy per nucleon
- Iron (^{56}Fe) is at the peak
 - On the heavy side of iron, fusion delivers energy
 - On the lighter side of iron, fusion delivers energy
 - This is why normal stars stop fusion after iron
 - Huge energy step to be gained in going from hydrogen (^{1}H) to helium-4 via fusion

What does uranium break into?
- Uranium doesn’t break into two equal pieces
 - usually one with mass around 95 a.m.u. and one with mass around 140 a.m.u.
- The fragments are very neutron-rich and some drip off immediately
 - these can spur additional fission events...
- Even after the neutron-drip, the fragments rapidly undergo radioactive transformations until they hit stable configurations
Messy details summarized
- ^{235}U will undergo spontaneous fission if a neutron happens by, resulting in:
 - two sizable nuclear fragments flying out
 - a few extra neutrons
 - gamma rays from excited states of daughter nuclei
 - energetic electrons from beta-decay of daughters
- The net result: lots of banging around
 - generates heat locally (kinetic energy of tiny particles)
 - for every gram of ^{235}U, get 65 trillion Joules, or about 16 million Calories
 - compare to gasoline at roughly 10 Calories per gram
 - a tank of gas could be replaced by a 1-mm pellet of ^{235}U!!

Aside on nuclear bombs
- Since neutrons initiate fission, and each fission creates more neutrons, there is potential for a chain reaction
- Have to have enough fissile material around to intercept liberated neutrons
- Critical mass for ^{235}U is about 15 kg, for ^{239}Pu it’s about 5 kg
- Bomb is dirt-simple: separate two sub-critical masses and just put them next to each other when you want them to explode!
- difficulty is in enriching natural uranium to mostly ^{235}U