Origin and Evolution of Life on Earth
Bennett & Shostak Chapter 6

HNRS 228 Astrobiology
w/Dr. H. Geller

Origin and Evolution of Life on Earth - Chapter 6 Overview

- Searching for the origin (6.1)
- Functional beginnings of life (6.2)
 - From chemistry to biology at the molecular level
- Prokaryotes and oxygen (6.3)
- Eukaryotes and explosion of diversity (6.3)
- Mass extinctions, asteroids and climate change (6.4)
- Evolutions of humans (6.5)
- Science in Action: Artificial Life (6.6)

Searching for the origin

- Origin of Life Theories
 - Special Creation
 - Oldest and most widely accepted hypothesis.
 - Extraterrestrial Origin
 - Panspermia - Cosmic material may have carried complex organic molecules to earth.
 - Spontaneous Origin
 - Life evolved from inanimate matter.

Science Searching for the Origin

- Tools and methodologies
 - Principles of physics (e.g., 1st and 2nd Law of TD)
 - Principles of geology (e.g., relative/absolute dating)
 - Principles of chemistry (e.g., chemistry of water)
 - Principles of biology (e.g., key macromolecules)
 - Occam’s razor where appropriate
- Conclusions: plausible scenario of the events and processes that lead to the origin of life

Panspermia

FeS + H2S FeS2 +H2 + Free Energy

Searching for the Origin: Where on Earth?

- Options
 - Continental landscapes
 - Shallow pools
 - Hot springs
 - Deep sea vents
 - Deep in crust
 - Under frozen seas
- Data to support one or the other
 - Comparative genomics
 - Chemical energy (hydrogen sulfide): FeS + H2S \rightarrow FeS2 + H2 + Free Energy
- Conclusion: deep sea vents
 - Probability of bombardment
Searching for the Origin

- When did life begin?
- Evidence
 - Widespread life forms (3.5 B years ago)
 - Stromatolites (3.5 B years ago)
 - Fossilized cells (3.5 B years ago)
 - Radiometric dating: carbon isotopes (3.85 B years ago)
 - Carbon 12 versus Carbon 13
- Range of dates: 4.1 to 3.85 B years ago
- Conclusions
 - Life arose late in the Hadean Eon
 - Life colonized planet in very short time frame (< 500 M years)

Searching for the Origin: Comparative Genomics

- Comparative morphology versus comparative genomics
- "Living Fossils" of DNA and RNA
 - Sequence of nucleotides in DNA and genome
 - Pattern and process of change in sequences
 - Comparing sequences reveals a pattern/order
- Methodology of comparison - rRNA (ribosomal RNA)

Searching for the Origin: Three Branches of Life Forms

- Results from comparative genomics
 - Three major domains
 - Bacteria
 - Archaea
 - Eukarya
- Common ancestor analysis
- Comparison to organisms today
 - Deep sea volcanic vents
 - Thermophiles (hyperthermophiles)
 - Comparison to environment of Hadean Eon

Life and Atmosphere

- One assumption about the early atmosphere was a reducing atmosphere of carbon dioxide, nitrogen gas, and water vapor, but very little oxygen.
 - Amino acids would therefore not last long.
 - Atmosphere would have changed with the advent of photosynthesis.

Beginnings of Life on Earth

- Organic chemistry*
- Transition from chemistry to biology
- Panspermia
- The evolution of sophisticated features of metabolism and information brokers
- Conclusions

* Enzymes first or TCA or?
iClicker Question

- The origin of life on Earth most likely occurred
 - A before 4.5 billion years ago
 - B between about 4.5 billion years ago and 3.5 billion years ago
 - C between about 3.0 billion years ago and 2.5 billion years ago
 - D between about 2.5 billion years ago and 2.0 billion years ago

iClicker Question

- The first living organisms probably were
 - A cells without nuclei that used RNA as their genetic material
 - B cells with nuclei that used RNA as their genetic material
 - C cells with nuclei that used DNA as their genetic material

Miller-Urey Experiment

- Stanley Miller and Harold Urey (1953) attempted to reproduce conditions at the ocean's edge under a reducing atmosphere.
 - Were able to form amino acids with the addition of lightning to a reducing atmosphere rich in hydrogen and devoid of oxygen.

Significance of and Sequel to Urey Miller Experiment

- Multiple variations of the study (e.g., atmosphere)
 - 20+ amino acids, sugars, bases for DNA and RNA, ATP, etc.
- Significance: scenario for the abiotic formation of key carbon polymers (macromolecules)
 - Probable environments
 - Deep sea vents
 - Tidal pools (role of repeated evaporation and concentration)
 - "evapoconcentration", asteroid bombardment
- Chemical events leading to an "RNA World"
iClicker Question

- The importance of the Miller-Urey experiment is that
 - A it proved beyond doubt that life could have arisen naturally on the young Earth.
 - B it showed that natural chemical reactions can produce building blocks of life.
 - C it showed that clay can catalyze the production of RNA.

Evolutionary Perspective of Enzymes

- Evolutionary advantage of enzymes
 - Specific acceleration of reactions
 - Fitness value: positive
 - Information broker: coded in the DNA
 - Mutation
 - Reproduction
- How did enzymes come to be?

Ribozymes

- What are ribozymes (from ribonucleic acid enzyme)?
 - NOT ribosomes (components of cells where proteins built from amino acids)
 - mRNA (small fragments)
 - Functions
 - Synthesis of RNA, membranes, amino acids, ribosomes
 - Properties
 - Catalytic behavior (enhance rates ~20 times)
 - Genetically programmed
 - Naturally occurring (60-90 bases)

Ribozymes (continued)

- Laboratory studies of ribozymes
 - Creation of RNA fragments at random with existence of enzyme-like properties
 - Variety of enzyme-like properties
 - Cleavage of DNA
 - Cleavage of DNA-RNA hybrids
 - Linking together fragments of DNA
 - Linking together fragments of RNA
 - Transformation of polypeptides to proteins
 - Self-replication (2001)

Summary of Ribozymes

- mRNA fragments
- 3-D conformation like proteins (e.g., fold)
- Functional ribozymes created at random in test tube
- Exhibit catalytic behavior
- Self replicate
- Play a prominent/key role in any scenario for understanding the evolution of life at the biochemical and molecular level
RNA World

Functional Beginnings of Life:
Transition from Chemistry to Biology

• Ribozymes
 - Enzyme activity
 - Self replicating
• Generation of biomacromolecules (C polymers: e.g., sugars, nucleotides, ATP)
 - via abiotic processes on Earth (Urey-Miller)
 - via Panspermia
 - via biotic processes (e.g., ribozymes)
• Role of mutations, natural selection and environment: incremental changes in biomacromolecules that are inherited via RNA and DNA.

Chemical Evolution

• Debated if RNA or Proteins evolved first.
 - RNA Group believes other complex molecules could not have been formed without a heredity molecule.
 - Protein Group argues that without enzymes, replication would not be possible.
 - Peptide-Nucleic Acid Group believes peptide nucleic acid was precursor to RNA.

Evolution of Photosynthesis

$\text{CO}_2 + \text{H}_2\text{O} + \text{Light} = \text{CH}_2\text{O} + \text{O}_2$

• Key processes
 - Absorption of light (pigments)
 - Conversion of light energy into chemical energy (ATP)
 - Synthesis of simple carbon compounds for storage of energy
• Purple bacteria and Cyanobacteria
 - Primitive forms (~3.5 BYA)

iClicker Question

• “RNA world” refers to
 - A the possibility that life migrated from Mars.
 - B the idea that RNA was life’s genetic material before DNA.
 - C the idea that early life was made exclusively from RNA, needing no other organic chemicals.

Ocean Edge Scenario

• Bubble Theory - Bubble structure shielded hydrophobic regions of molecules from contact with water.
 - Alexander Oparin - Primary abiogenesis.
 - Photobionts - Chemical-concentrating bubble-like structures which allowed cells a means of developing chemical complexity.
Prokaryotes

- Microfossils - Earliest evidence of life appears in fossilized forms of microscopic life.
 - Physically resemble bacteria.
 - Prokaryotes - Lack nucleus.
 - Remember Eukaryotes contain nucleus

Archaebacteria - Ancient bacteria that live in extremely hostile conditions.
- Lack peptidoglycan in cell walls.
- Have unusual lipids in cell membranes.
 - Methanogens (microorganisms that produce methane as a metabolic byproduct)
 - Anaerobic
 - Halophiles
 - Thermophiles

Prokaryotes and Atmospheric Oxygen

Evolution of Photosynthesis
\[\text{CO}_2 + \text{H}_2\text{O} + \text{Energy} = \text{CH}_2\text{O} + \text{O}_2 \]
Evolution of respiration
\[\text{CH}_2\text{O} + \text{O}_2 = \text{CO}_2 + \text{H}_2\text{O} + \text{Energy} \]
Possibility that respiration is simply the reverse of photosynthesis
Oxygen crisis and the oxygen stimulation to evolution

iClicker Question

The oxygen in Earth's atmosphere was originally released by
- A outgassing from volcanoes.
- B plants.
- C cyanobacteria.
iClicker Question

• Early life arose in an oxygen-free environment, and if any of these microbes had somehow come in contact with molecular oxygen, the most likely effect would have been
 - A nothing at all.
 - B to increase their metabolic rates.
 - C to kill them.

iClicker Question

• Which statement about the Earth’s ozone layer is not true?
 - A It protects us from dangerous solar radiation.
 - B It did not exist when life first arose on Earth.
 - C It first formed a few hundred million years after life colonized the land.

Eukaryotes and an Explosion of Diversity

• Incremental changes in evolution: role of oxygen and diversification of organisms (explain ATP fitness)
• Quantum changes in evolution
 - Symbiosis
 - Lynn Margulis theory: eukaryotes are derived from prokaryotes
 - Compartmentalization and organelles
 - Bacterial origins of chloroplast and mitochondria

Eukaryotes and explosion of diversity

• Eubacteria - Second major bacterial group.
 - Contain very strong cell walls and simpler gene architecture.
 - Cyanobacteria
 - Photosynthetic
 » Appeared at least 3 bya

First Eukaryotic Cells

• First appeared about 1.5 bya. (maybe earlier)
 - Possess internal nucleus.
• Endoplasmic Reticulum - Network of internal membranes in eukaryotes.
 - Both Endoplasmic Reticulum and nuclear membrane are believed to have evolved from infolding in outer bacterial membranes.

Nucleus and Endoplasmic Reticulum Origin

Mitochondria and Chloroplasts

- **Endosymbiotic Theory** suggests a critical stage in the evolution of eukaryotic cells involved endosymbiotic relationships with prokaryotic organisms.
 - Energy-producing bacteria may have come to reside within larger bacteria, eventually evolving into mitochondria.
 - Photosynthetic bacteria may have come to live with larger bacteria, eventually forming chloroplasts in plants and algae.

Sexual Reproduction and Multicellularity

- **Eukaryotic Cells** possess the ability to sexually reproduce.
 - Permits frequent genetic recombination.
- Diversity was also promoted by multicellularity.
 - Fosters cell specialization.

Mass Extinctions, Asteroids and Climate Change

- **Mass extinctions**
 - Dramatic declines in a variety of species, families and phyla (>25%)
 - Timing of decline is concurrent
 - Rate of decline is precipitous (geological sense)
 - Example of catastrophism
- **Best example**
 - Cretaceous/Tertiary boundary (65 M years ago)
 - K-T boundary and Alvarez theory of catastrophism

Mass Extinctions, Asteroids and Climate Change: K-T Boundary

- **Observations**
 - Iridium deposits in distinct layers: suggestion of an asteroid (10-15 Km)
 - Other trace elements (characteristics of asteroids)
 - Shocked quartz
 - Soot deposits
- **Conclusive Evidence**
 - Impact crater 200 km off Yucatan Peninsula (Chicxulub Crater)

Mass Extinctions, Asteroids and Climate Change: Other examples

- **Other mass extinctions**
 - Five major extinctions over last 600 M years
- **Evidence for gradualism**
 - First principles: evolution
 - Pattern in the data
 - Recovery response
 - Overall increment in number of families over geological time
- **Conclusions: Catastrophism coupled with gradualism**

iClicker Question

- The hypothesis that an impact killed the dinosaurs seems
- **A** well supported by geological evidence.
- **B** an idea that once made sense but now can be ruled out.
- **C** just one of dozens of clear examples of impacts causing mass extinctions.
Evolutions of Humans

• Evidence for human evolution
 - Fossils
 • Differences throughout world
 - Out of Africa
 • Increase in brain volume and weight/mass ratio
 - Society
 • Changes in history
 - Civilizations
 • Technological developments

Artificial Life

• What is "artificial life”
• New organisms modified from existing organisms
• New organisms "created" from non-life
• Bioethics of artificial life

iClicker Question

• Which of the following is a likely benefit of creating artificial life?
 - A We'll gain insight into the origin of life on Earth.
 - B The new life could eliminate our dependence on fossil fuels.
 - C The technique could allow us to bring vanished species back to life.

Origin and Evolution of Life on Earth: Conclusions

• Plausible scenarios for the early origin of life on Earth (abiotic and biotic)
• Role of mutation and evolution in origin of increasingly more complex forms of metabolism
• Role of major evolutionary and climatological events as "pulses" of diversification in biota