9-6. Since particle 1 has $F = 0$, $r_0 = v_0 = 0$, then $r_1 = 0$. For particle 2

$$F_2 = F_0 \hat{x} \quad \text{then} \quad \ddot{r} = \frac{F_0}{m} \hat{x}$$

Integrating twice with $r_0 = v_0 = 0$ gives

$$r_2 = \frac{F_0}{2m} t^2 \hat{x}$$

$$r_{CM} = \frac{m_1 r_1 + m_2 r_2}{m_1 + m_2} = \frac{F_0}{4m} t^2 \hat{x}$$

By symmetry $\bar{y} = 0$

$$m_o = 16 \ m_H$$

Let $m_H = m$, $m_o = 16 \ m$

Then $\bar{x} = \frac{1}{M} \sum m_i x_i$

$$\bar{x} = \frac{1}{18m} (2ma \cos 52^\circ) = \frac{a \cos 52^\circ}{9}$$

$$\bar{x} = 0.068 \ a$$

9-7. By symmetry $\bar{x} = 0$. Also, by symmetry, we may integrate over the $x > 0$ half of the triangle to get \bar{y}. $\sigma = \text{mass/area}$

$$\bar{y} = \frac{\int_{-x=0}^{a} \int_{y=0}^{\sqrt{2} \ x} \sigma \ y \ dy \ dx}{\int_{x=0}^{a} \int_{y=0}^{\sqrt{2} \ x} \sigma \ dy \ dx} = \frac{a}{3\sqrt{2}}$$

$$\bar{y} = \frac{a}{3\sqrt{2}}$$
Let the axes be as shown with the projectile in the y-z plane. At the top just before the explosion, the velocity is in the y direction and has magnitude \(v_{oy} = \frac{v_0}{\sqrt{2}} \).

\[
v_{oy} = \frac{v_0}{\sqrt{2}} = \sqrt{\frac{2E_0}{m_1 + m_2}} = \sqrt{\frac{E_0}{m_1 + m_2}}
\]

where \(m_1 \) and \(m_2 \) are the masses of the fragments. The initial momentum is

\[
p_i = (m_1 + m_2) [0, \sqrt{\frac{E_0}{m_1 + m_2}}, 0]
\]

The final momentum is

\[
p_f = p_1 + p_2
\]

\[
p_1 = m_1(0, 0, v_1)
\]

\[
p_2 = m_2(v_x, v_y, v_z)
\]

The conservation of momentum equations are

\[
p_x: \quad 0 = m_2v_x \quad \text{or} \quad v_x = 0
\]

\[
p_y: \quad \sqrt{\frac{E_0}{m_1 + m_2}} = m_2v_y \quad \text{or} \quad v_y = \frac{1}{m_2} \sqrt{\frac{E_0}{m_1 + m_2}}
\]

\[
p_z: \quad 0 = m_1v_1 + m_2v_z \quad \text{or} \quad v_1 = -\frac{m_2}{m_1} v_z
\]

The energy equation is

\[
\frac{1}{2}(m_1 + m_2) \cdot \frac{E_0}{m_1 + m_2} + E_0 = \frac{1}{2} m_1v_1^2 + \frac{1}{2} m_2(v_y^2 + v_z^2)
\]

or

\[
3E_0 = m_1v_1^2 + m_2(v_y^2 + v_z^2)
\]

Substituting for \(v_y \) and \(v_1 \) gives

\[
v_z = \sqrt{\frac{E_0 m_1(2m_2 - m_1)}{m_2^2(m_1 + m_2)}}
\]

\[
v_1 = -\frac{m_2}{m_1} v_z \text{ gives}
\]

\[
v_1 = -\sqrt{\frac{E_0 (2m_2 - m_1)}{m_1(m_1 + m_2)}}
\]
So \(m_1 \) travels straight down with speed \(|v_1|\);

\(m_2 \) travels in the \(y-z \) plane

\[
v_2 = (v_y^2 + v_z^2)^{1/2} = \sqrt{\frac{E_0 (4m_1 + m_2)}{m_2 (m_1 + m_2)}}
\]

\[
\theta = \tan^{-1} \frac{v_z}{v_y} = \tan^{-1} \frac{\sqrt{m_1 (2m_2 - m_1)}}{(m_1 + m_2)}
\]

The mass \(m_1 \) is the largest it can be when \(v_1 = 0 \), meaning \(2m_2 = m_1 \) and the mass ratio is

\[
\frac{m_1}{m_2} = \frac{1}{2}
\]

9-10.

First, we find the time required to go from \(A \) to \(B \) by examining the motion. The equation for the \(y \)-component of velocity is

\[
v_y = v_0 \sin \theta - gt
\]

At \(B \), \(v_y = 0 \); thus \(t_B = \frac{v_0 \sin \theta}{g} \). The shell explodes giving \(m_1 \) and \(m_2 \) horizontal velocities \(v_1 \) and \(v_2 \) (in the original direction). We solve for \(v_1 \) and \(v_2 \) using conservation of momentum and energy.

\[
P_x: \quad (m_1 + m_2)v_0 \cos \theta = m_1v_1 + m_2v_2
\]

(2)

\[
E: \quad \frac{1}{2}(m_1 + m_2)v_0^2 \cos^2 \theta + E = \frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2
\]

(3)

Solving for \(v_2 \) in (2) and substituting into (3) gives an equation quadratic in \(v_1 \). The solution is

\[
v_1 = v_0 \cos \theta \pm \sqrt{\frac{2m_2 E}{m_1 (m_1 + m_2)}}
\]

(4)

and therefore we also must have

\[
v_2 = v_0 \cos \theta \mp \sqrt{\frac{2m_1 E}{m_2 (m_1 + m_2)}}
\]

(5)

Now we need the positions where \(m_1 \) and \(m_2 \) land. The time to fall to the ocean is the same as the time it took to go from \(A \) to \(B \). Calling the location where the shell explodes \(x = 0 \) gives for the positions of \(m_1 \) and \(m_2 \) upon landing:

\[
x_1 = v_1 t_B; \quad x_2 = v_2 t_B
\]

Thus

\[
|x_1 - x_2| = \frac{v_0 \sin \theta}{g} \frac{1}{|v_1 - v_2|}
\]

(7)

Using (4) and (5) and simplifying gives

\[
|x_1 - x_2| = \frac{v_0 \sin \theta}{g} \sqrt{\frac{2E}{m_1 + m_2}} \left[\sqrt{\frac{m_1}{m_2}} + \sqrt{\frac{m_2}{m_1}} \right]
\]

(8)