Physics 303, Test I, Fall 2004

NAME:

(1): Which of the following describe periodic motion. For those cases, find the period. If in addition, the motion is also simple harmonic, find the amplitude of the motion.

\[x = \cosh(t) \]
\[x = \cos(2t) + 6\cos(4t) \]
\[x = 2 - \cos(t), \ y = \sin(0.5t + 0.5) \]
\[x = \sec(t) \]
\[z = a + b\cos(2t) + c\sin(2t) \]
\[y = e^{-t}\cos(t) \]

(2): Find the equilibrium points and determine their stability for a particle of mass \(m \) subjected to a force \(f(x) = cx + x^3 \) for (a) \(c < 0 \) (b) \(c > 0 \) (c) \(c = 0 \).

(3): Consider a charged particle of charge \(q \) and mass \(m \) moving horizontally in a constant electric field \(E \), in a medium with resistive force \(mkv \). Calculate the time for its velocity to become half of its original value.

(4): Consider a particle of mass \(m \) thrown at an angle \(\theta \) with a velocity \(v_0 \) in a medium with resistive force \(mkv^2 \).
(a) Calculate \(x \) as a function of velocity for both upward and downward motion.
(b) Calculate the terminal speed of the particle.
(c) (EXTRA CREDIT) Does the particle ever reach this terminal velocity? Explain.