Description: IMG_3161edt

Mingzhen Tian

Assistant Professor

 

Phone: (703) 993-1285 (office),

(703) 993-8476 (lab)

Fax: (703) 993-1269

E-mail: mtian1@gmu.edu

Office: Room 309

Lab: Room 326, Planetary Building (formerly Sci. & Tech I)

 

 

 

Mailing Address:

School of Physics, Astronomy, and computational Sciences
George Mason University

4400 University Drive, MS 3F3

Fairfax,  VA 22030-4444

Education:

PhD in Laser & Materials, Paris-Sud University, France, 1997

Professional experience:

12/1995-12/1997: Research Assistant, Laboratoire Aimé Cotton, CNRS, France

02/1998-09/1998: Post-doc. Research Associate, Lund Institute of Technology, Sweden.

10/1998-08/2007: Post-doc. Research Associate, Research Scientist, Research Assistant Professor, Montana State University.

Research Interests:

Laser atomic spectroscopy, nonlinear and quantum optics, and quantum information science.

Currently focused on rare-earth based solid state quantum memory and quantum computation, which are the important components in developing quantum information science and technology.  The research also include investigation of laser spectroscopic properties of rare-earth ions trapped in inorganic crystal lattice at cryogenic temperature, the coherent and incoherent processes under the excitation of composite laser pulses, and the influence of the static electric and magnetic fields. Study of these processes provides the information needed to understand and control the physical systems to demonstrate quantum memory and robust quantum logic gates. Research activities involve both experiments and theoretical modeling. Student research projects are currently carried out at both graduate and undergraduate levels.

 

 

Current projects:

1.    Rare-earth ensemble based solid state quantum memory.

2.    Robust quantum logic gates based on geometric phase.

3.    Multipartite entanglement in GHZ diagonal states.

 

 

Representative Publications:

1.        M. Tian, D. Vega, and J. Dilles, “Quantum Memory Based on Spatio-Spectral Atomic Comb”, (Submitted to Physical Review A).

2.        X. Chen1, P. Yu, L. Jiang, and M. Tian, “Genuine Entanglement of Four-Qubit Cluster Diagonal States” http://arxiv.org/abs/1204.5512 (submitted to Physical Review A, under revision).

3.         X. Chen1; L. Jiang, P. Yu, and M. Tian, “Total and genuine entanglement of three-qubit GHZ diagonal states”. http://arxiv.org/abs/1204.5511 (submitted to Physical Review Letters.)

4.         M. Tian, T. Chang, K. D. Merkel, R, Wm. Babbitt “Reconfiguration of spectral absorption features using a frequency-chirped laser pulse”, Applied Optics 50, 6548-6554 (2011).

5.         J. T. Thomas, M. Lababidi, and M. Tian, “Robustness of Single Qubit Geometric Gate against Systematic Error”, Physical Review A 84,042335 (2011). (1 citation)

6.         M. Tian, I Zafarrulah, T. Chang, R. K. Mohan, and Wm. Randall Babbitt, “Demonstration of geometric operations on the Bloch vectors in an ensemble of rare-earth metal atoms”, Physical Review A. 79, 022312 (2009). (2 citations)

7.         C. J. Renner, R. R. Reibel, M. Tian, T. Chang, and W. R. Babbitt: “Broadband photonic arbitrary waveform generation based on spatial-spectral holographic materials”, J. Optical Society of America B. 24, 2979 (2007). (3)

8.         I. Zaharullah, M. Tian, T. Chang, and W. R. Babbitt: “Preparation of inverted medium and processing in the inverted medium”, J. Luminescence 127, 158 (2007). (6)

9.         T. Chang and M. Tian: “Numerical modeling of optical coherent transient processes with complex configurations—III: Noisy laser source”, J. Luminescence 127, 76 (2007).

10.      R. K. Mohan, T. Chang, M. Tian, S. Bekker, A. Olson, C. Ostrander, A Khallaayoun, C. Dollinger, W.R. Babbitt, Z. Cole, R. R. Reibel, K.D. Merkel, Y. Sun, R. Cone, F. Schlottau, and K. H. Wagner: “Ultra-wideband spectral analysis using S2 technology” J. Luminescence 127, 116 (2007). (17)

11.      J. Murray, H. Li, M. Tian, W. R. Babbitt, T. Chang, “Efficient and uniformity considerations in optical coherent transient devicesJ. Optical Society of America B 23, 795 (2006). (1)

12.      T. Chang, M. Tian, R. K. Mohan, C. Renner, K. D. Merkel, and W. R. Babbitt, “Recovery of spectral features readout with frequency-chirped laser fields”, Optical Letters. 30, (2005). (19)

13.      T. Chang, R. K. Mohan, M. Tian, T. L. Harris, Wm. R. Babbitt, and K. D. Merkel, “Frequency Chirped readout of spectral absorption features”, Physical Review A 70, 63803 (2004) (15)

14.      T. L. Harris, M. Tian, W. R. Babbitt, G. W. Burr, J. A. Hoffnagle, and C. M. Jefferson, “Chirped excitation of optically dense inhomogeneously broadened medium using Eu3+: Y2SiO5”, J. Optical Society of America B 21, 811 (2004). (7)

15.      M. Tian, Z. W. Barber, J. A. Fischer, and Wm. R. Babbitt, “Geometric manipulation of the quantum states of two-level atoms”, Physical Review A 69, 050301(R), (2004). (28)

16.      M. Tian, Z. W. Barber, and Wm. R. Babbitt, “The Geometric Phase in Two-level Atomic systems” J. Luminescence. 108, 155 (2004). (6)

17.      R.R. Reibel; Z.W Barber, J.A Fischer; M. Tian, W.R. and Babbitt “Broadband demonstrations of true-time delay using linear sideband chirped programming and optical coherent transients J. Luminescence. 108, 103 (2004). (22)

18.      T. Chang, M. Tian, Wm R. Babbitt, “Numerical modeling of optical coherent transient processes with complex configurations—I. Angled beam geometry” J. Luminescence. 108,129 (2004). (6)

19.      T. Chang, M. Tian, Wm R. Babbitt, “Numerical modeling of optical coherent transient processes with complex configurations— II. Angled beams with arbitrary phase modulations”, J. Luminescence. 108,138 (2004). (12)

20.      M. Tian, R. Reibel, Z. Barber, J. Fischer, and W. R. Babbitt. “Observation of geometric phases using photon echoes”, Physical Review A 67, 011403(R) (2003). (8)

21.      Z. Barber, M. Tian, R. Reibel, and W. R. Babbitt “Optical pulse shaping using optical coherent transients”, Optical Express 10, 1145 (2002). (24)

22.      R. Reibel, Z. Barber, M. Tian, W.R. Babbitt, Z. Cole, and K.D. Merkel, “Amplification of high bandwidth phase modulated signals at 793nm”, Optical Society of America B. 19, 2315 (2002). (17)

23.      M. Tian, R. Reibel, Z. Barber, and W. R. Babbitt “Nutational stimulated photon echoes”, Optical Letters 27, 1156 (2002). (2)

24.      R. Reibel, Z. Barber, M. Tian, and W. R. Babbitt “Temporally overlapped linear frequency-chirped pulse programming for true-time delay applications”, Optical Letters 27, 494 (2002). (22)

25.      M. Tian, Z. Barber, T. Chang, R. Reibel, and W. R. Babbitt “Temporal and spatial behavior of photon echoes stimulated from long pulses”, J. Luminescence. 98, 367 (2002). (1)

26.      R. Reibel, Z. Barber, M. Tian, and W. R. Babbitt “High bandwidth spectral grating programmed with linear frequency chirps”, J. Luminescence. 98, 355 (2002). (12)

27.      M. Tian, R. Reibel, and W. R. Babbitt “Demonstration of optical coherent transient true-time delay at 4 Gbit/s”, Optical Letters 26, 1143 (2001). (17)

28.      M. Tian, J. Zhao, Z. Cole, R. Reibel, and W. R. Babbitt “Dynamics of broadband accumulated spectral grating in Tm3+: YAG”, J. Optical Society of America B. 18, 673 (2001). (15)

29.      R. K. Mohan, U. Elman, M. Tian, B. Luo, and S. Kroll, “Photon-echo amplification and regeneration for optical data storage and processing”, J. Luminescence. 86, 383 (2000). (2)

30.      K. Mohan, U. Elman, M. Tian, B. Luo, and S. Kröll, “Regeneration of photon echoes with amplified photon echoes Optical Letters 24, 37 (1999). (10)

31.      M. Tian, I. Lorgere, J-P. Galaup, and J-L Le Gouët, “Ultra-fast temporal pattern recognition through a persistent spectral hole-burning filter”, J. Optics A: Pure and Applied Optics 2, (1999).

32.      M. Tian, F. Grelet, I. Lorgeré, J-P. Galaup, and J-L Le Gouët,Persistent spectral hole burning in an organic material for temporal pattern recognition”, J. Optical Society of America B 16, 74 (1999). (12)

33.      M. Tian, J. Zhang, I. Logeré, J-P. Galaup, and J-L Le Gouët, “Phototautomerization and broadband spectral holography”, J. Optical Society of America B 15, 2216 (1998). (4)

34.      M. Tian, F. Grelet, D. Pavolini, J-P. Galaup, and J-L Le Gouët.Four-wave hole burning spectroscopy with a broadband laser source”, Chemical Physics Letters 274, 518 (1997). (6)

35.      J-L Le Gouët, F. Grelet, I. Logeré, M. Rätsep, M. Tian, M-L Roblin and C. Sigel, Spectral holograms in the terahertz range”, Molecular Crystals and Liquid Crystals 291, 295 (1996). (1)

36.      M. Rätsep, M. Tian, F. Grelet, J-L Le Gouët, C. Sigel, and M-L RoblinTime-encoding spatial routing in a photorefractive crystal”, Optical Letters 21, 1292 (1996). (3)

37.      M. Rätsep, M. Tian, I. Logeré, F. Grelet, and J-L Le Gouët, “Fast random access to frequency selective optical memories”, Optical Letters 21, 83 (1996). (12)

38.      I Lorgeré, F. Grelet, M. Rätsep, M. Tian, J-L Le Gouët, C. Sigel, and M-L RoblinSpectral phase encoding for data storage and addressing”, J. Optical Society of America B 13, 2229 (1996). (6)

39.      M. Tian, T. Chang, J. Zhang, B. Luo, W. Li, S. Huang, and J. YuThermally activated barrier crossing and hole -filling in donor-acceptor electron transfer system, J. Luminescence. 64, 131 (1995).

40.      J. Zhang, H. Song, Y, Zhao, M. Tian, K. Dou, S. Huang, and J. Yu, Nonexponential hole burning in Sm2+ doped mixing crystals”, J. Luminescence. 64, 207(1995). (4)

41.      H. Wang, M. Tian, J. Lin, S. Huang, J. Yu, H. Chen, and Q. Jing, “Study of two-wave coupling in Cu: KNSBN using red light”, Optical Communications 115, 563 (1995). (12)

42.      Y. Liu, H. Wang, M. Tian, J. Lin, X. Kong, S. Huang, and J. Yu, “Multiple-hologram storage for Mo/PVA thin film” Optical Letters 20, 1495 (1995). (17)

43.      I. Lorgeré, M. Rätsep, J-L Le Gouët, F. Grelet, M. Tian, A. Débarre, and P. Tchénio, “Storage of a spectrally shaped hologram in a frequency selective material”, J. Physics B: Atomic, Molecular, and Optical Physics. 28, L565 (1995).

 

 

 

Students:

Current:

  • Devin Vega, Ph.D. Student
  • J. T. Thomas,  Ph.D. Student
  • Jacob Dilles, undergraduate

Past:

  • Emily Mathison, (MS, Dec. 08)
  • Jason Lee, (MS, May 08)
  • Mahmoud Lababidi, Ph.D student
  • Jeremy Kolansky, undergraduate (B.Sc. in Physics, Jan. 2010).
  • Sultan Behery, undergraduate (B.Sc. in Physics and Electrical Engineering, May. 2009).
  • Chhetri Sanjog, undergraduate (B.Sc. in Physics, Jan. 2008).

 

 

Teaching:

Undergraduate Courses

Physics 161: University Physics I lab,  Fall 2012 (2 classes).

Physics 261: University Physics II lab, Spring 2008, Spring 2009, Fall 2011, Spring 2012 (2 classes).

Physics 246: College Physics II lab, Spring 2010.

Physics 402: Introduction to Quantum Mechanics/Atomic Physics, Fall 2007, Fall 2008, Fall 2009.

Physics 408: Senior project, Fall 2007, Spring 2008, Fall 2009.

Physics 416: Special Topic in Modern Physics, Fall 2008.

Graduate Course

Physics 502: Quantum Mechanics (co-listed with Physics 402 with higher-level requirements),Fall 2008, Fall 2009.

Physics 784: Quantum Mechanics II, Spring 2011.

Physics 703: Physics Seminar, Spring & Fall 2009.

Physics 796: Directed Reading, Spring & Fall 2008, Fall 2009, Spring & Fall 2010, Spring & Fall 2011.

Physics 798: Doctoral Dissertation Proposal, Spring & Fall 2009, Spring 2010.

Physics 799: Doctoral dissertation, Fall 2010, Spring & Fall 2011, Spring 2012.

 

Updated: Aug. 10, 2012