Introduction

Astronomy & Astrophysics

ASTRON = Star
NOMOS = Law
PHYSIC = Nature

Astronomy 113
Dr. Joseph E. Pesce, Ph.D.

© 2007 Joseph E. Pesce, Ph.D

1. The Scientific Method: hypothesis, design observations to falsify hypothesis, improve observations. No "proof" theory is correct, just accumulation of supporting evidence
2. No definitive answers
3. Sky/universe is ever-changing - a wonderful and violent place
4. Celestial objects evolve: stars are born and die, universe expands
5. Astronomy is a time machine
6. An indirect science

Goals

- Explain Scientific Method
- Discuss Importance of using physical laws & lab measurements in Astronomy to investigate remote objects
- Understand scientific notation
- Define major units used by Astronomers to express distance

© 2007 Joseph E. Pesce, Ph.D
Scientific:

- Must assume *laws of physics* are valid everywhere (space & time)
- Astronomy is a branch of Physics
- Modern Astronomers try to determine **physical nature** of celestial objects & **relationship** among the various objects

Astronomy is observational rather than experimental:

- All direct information about physical conditions of celestial objects must come from an understanding of the nature of atoms & their constituents (i.e., the smallest entities in the universe - how ironic!)

Scientific Method

Our ideas must agree with what we observe

So... Devise a theory (a collection of ideas which appear to explain an observation):

- Theory must be consistent with observation
- Theory must make predictions which can be tested
- Observe, theorize, test
 - Theory is scientific only if it can be potentially disproved

We will see later the example of Geo/Heliocentric views.

Scientific Notation

1 million billion = 1,000,000,000,000,000,000,000

Cumbersome!!

So...

Scientific Notation: 10 followed by an **exponent** or **superscript** = # of zeroes/digits after "1"

"Powers of Ten"

- $$10^0 = 1$$
- $$10^1 = 10 \times 1$$
- $$10^2 = 100 \times 10$$
- $$10^3 = 1,000 \times 10 \times 10$$
- $$10^4 = 10,000 \times 10 \times 10 \times 10$$

Distance between Sun and Earth = 150,000,000 km
- $$1.5 \times 10^8$$ km
Negative exponents

\[
10^0 = 1 \\
10^{-1} = 0.1 \ (1/10) \\
10^{-2} = 0.01 \ (1/100) \\
10^{-3} = 0.001 \ (1/1000)
\]

\[
5.678 \times 10^6 = 5,678,000 \\
2.3 \times 10^{-9} = 0.0000000023
\]

Thousand, million, billion, trillion

To multiply:

add exponents → \((5 \times 10^5) \times (2 \times 10^{20}) = 10 \times 10^{25}\) or \(1 \times 10^{26}\)

To divide:

subtract exponents → \(6 \times 10^{23} / 2 \times 10^7 = 3 \times 10^{16}\)

Math:

Distances

Numbers are vast

- Quickly make human scales (inches, meters, etc) unruly - or numbers unimaginably large

In the Solar System we use the Astronomical Unit (AU)

- Average distance Earth - Sun = 1.5x10^8 km or 93 million miles
- Sun to Jupiter is 5.2 AU

But even AUs are awkward...

"light year" = distance light travels in 1 year (going 186,000 miles/s or 300,000 km/s)

1 Light year (ly) = 9.46 x 10^{12} km = 6 x 10^{12} miles or about 63,000 AU

"light year" = 1/3600° = 1 arcsecond (PARallax SECond)

1 parsec (pc) = 3.09 x 10^{13} km = 3.26 ly

Proxima Centauri is at 1.3 pc
1 kpc = 10^3 pc = kilo pc
Sun to center of Milkyway = 8.6kpc
1 Mpc = 10^6 pc = Mega pc
Distance to Virgo Cluster = 20 Mpc
Earth - 10^3 km
Solar System - 10^8-10^9 km
Stars (nearby) - 10^{13-15} km
Galaxy - 10^{18} km
Local Group - 10^{19} km
Nearby Clusters - 10^{20} km
Perceivable Universe - 10^{23} km

Time

- Remember, light (information) travels at a fast but finite speed (186,000 miles/sec).
- It takes time for light to travel between objects (light year = distance light travels in one year = 6 trillion miles).
- So, all astronomical objects are observed in the PAST.
- Current values for age of universe are 13.748 yrs

Astronomical Time Machine

<table>
<thead>
<tr>
<th>Object</th>
<th>Time ago</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moon</td>
<td>1.5 seconds ago</td>
</tr>
<tr>
<td>Sun</td>
<td>8.5 minutes ago</td>
</tr>
<tr>
<td>Pluto</td>
<td>4-5 hours ago</td>
</tr>
<tr>
<td>Nearest Star</td>
<td>4 years ago</td>
</tr>
<tr>
<td>Center of Galaxy</td>
<td>25,000 years ago</td>
</tr>
<tr>
<td>Andromeda Galaxy</td>
<td>2.6 million years ago</td>
</tr>
<tr>
<td>Most distant Galaxies</td>
<td>8-10 billion years ago</td>
</tr>
<tr>
<td>Quasars</td>
<td>11-12 billion years ago</td>
</tr>
</tbody>
</table>

Time & Large Numbers

- What is a Billion (other than a big number)?
 - In a "typical" human lifetime of 80 yrs, there are: 3 Billion seconds
 - (If you start counting 1 number every second as soon as you are born, you will only get to 3 billion after 80 years)
 - The universe has been around 400 million billion seconds!!!

Size/Distance Example

<table>
<thead>
<tr>
<th>Object</th>
<th>Diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sun</td>
<td>7×10^{10} cm</td>
</tr>
<tr>
<td>Earth</td>
<td>6×10^8 cm</td>
</tr>
<tr>
<td>Moon</td>
<td>2 x 10^8 cm</td>
</tr>
</tbody>
</table>

- If Sun were 1 meter diameter:
 - Earth’s diameter = 1 cm
 - Moon’s diameter = 0.3 cm
 - Jupiter’s = 20 cm (~8 inches)

 At this scale, 1 AU (1.5×10^{13} cm)
 Becomes 214 meters (2 football fields)

 Proxima Centauri, 4.2 ly (4×10^{18} cm)
 Becomes 35,200 miles!

Nature of Light
6-1

Goals

- List major regions of the spectrum in wavelength order & give examples.
- List major regions of the spectrum in wavelength order & give examples.
- Name two classes of telescopes & describe how they work.

6-2

Nature of Light

- White Light is actually a mixture of all colors (Newton - Prism)
 - This is not a property of the prism, since the process can be reversed image of prism.
- Speed of light is finite, but fast
 - In vacuum, $c = 300,000 \text{ km/s} = 186,000 \text{ miles/s}$ (ultimate speed limit)
 - Light in water, air, glass, etc. travels slower than in vacuum, and other objects can travel faster than light - Cherenkov radiation

6-3

History

- Isaac Newton - 1660s - “light is composed of particles too small to detect.”
- Christiaan Huygens - 1678 - light is like a wave
- Thomas Young - 1801 - experiments showing wavelike properties

6-4

Waves

- What is waving?
- Electric and Magnetic fields

James Clerk Maxwell - 1860 - describes all basic properties of E&M in four easy equations, finding:

- E & M Forces are two aspects of the same phenomena
- E & M fields travel through space at the speed of light
- EM Radiation is thus combined, oscillating E & M fields

6-5

Wavelength

- Different “colors” because wavelength of light is different
 - $\lambda = \text{angstrom (Å, } 10^{-10} \text{ m, or nanometers, } 10^{-9} \text{ m)}$
 - Visible light is 4000-7000Å (400-700nm)

6-6

Particle-Wave Duality

- Light is sometimes like a wave and sometimes like a particle
 - Particle nature is seen in the “photo-electric” effect (Einstein, Nobel prize, 1905)
 - Some colors of light remove electrons from a metal, but not others. Electrons received different amounts of energy from light “packets”, or PHOTONS
The Spectrum

- The shorter a photon’s wavelength, the higher its energy:
 \[E = \frac{hc}{\lambda} \]
 - \(E \) = energy, \(h \) = constant, \(c \) = speed of light, \(\lambda \) = wavelength
- Visible light is only a small component of EM radiation:

<table>
<thead>
<tr>
<th>Radio</th>
<th>Infrared</th>
<th>Visible</th>
<th>Ultraviolet</th>
<th>X-rays</th>
<th>(\gamma)-rays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long (\lambda)</td>
<td>Low E</td>
<td>Short (\lambda)</td>
<td>High E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red</td>
<td>Orange</td>
<td>Yellow</td>
<td>Green</td>
<td>Blue</td>
<td>Indigo</td>
</tr>
</tbody>
</table>

Not all transmitted by atmosphere

Electromagnetic Radiation & Spectra

6-8

The Spectrum

- Add figure of spectrum Zeilick p. 185

Goals

- Know Stefan-Boltzman law and Wien’s law
- State Kirchoff’s 3 laws of spectral analysis
- Describe Bohr model of the atom; spectral lines
- Know how spectral analysis provides info about chemical composition of celestial objects
- Indicate how protons, neutrons, and electrons are used to define elements

7-1

Blackbody - I

1. As it heats becomes brighter because it emits more EM radiation
2. The color \((\lambda \text{ of emitted radiation}) \) changes with temperature
 - Cool \(\rightarrow \) IR, red
 - Hot \(\rightarrow \) UV, blue

First noted by Thomas Wedgwood in 1792

7-2

Blackbody - II

Blackbody curves: temperature profiles of intensity of blackbody at different wavelengths

\[E = \sigma T^4 \]

Stefan-Boltzman Law (Intensity-temperature relationship for blackbodies):
An object emit energy at a rate proportional to the 4th power of its temperature (in Kelvin, absolute scale)
Wien's Law

Relationship between color peak & temperature found by Wien in 1893

Wien's Law: \(\lambda_{\text{max}} = \frac{2.898 \text{ cm}}{T} \) (in K)

The hotter an object, the shorter \(\lambda_{\text{max}} \)

Very useful for determining temperatures of star's surface - since brightness & size don't need to be known

Peak of Sun about 5800Å (5000K), so why not blue-green? (scattering)

Spectra - I

Fraunhofer: solar spectrum has dark lines (spectral lines)

Kirchoff-Bunsen: spectra of each element has characteristic pattern of spectral lines

Element: a fundamental substance which can't be broken into more basic chemicals

Spectral analysis led to discovery of new elements (e.g., cesium & rubidium)

1868, solar eclipse, saw helium on Sun 27 years before detected on Earth

Spectra - II

Each element has characteristic spectrum so by observing a spectrum of an astronomical object, we can determine types of elements present

We use instruments - spectrometers and spectrographs - to observe spectra (like a prism)

Kirchoff noted dark lines (absorption) and bright lines (emission) in spectra from different conditions of source

Kirchoff's Laws

1. A hot object, or hot dense gas produces a continuous spectrum (no "lines", a blackbody spectrum)
2. A hot rarified (low density) gas produces emission lines (bright features)
3. A cool gas in front of a continuous source of light produces absorption (dark) lines [absorption if background is hotter than foreground gas. Emission if background is cooler]

Why Do Spectra Occur?

Rutherford (1910): Atoms consist of positively charged, massive nucleus, orbited by tiny, negatively charged electrons

Nucleus: protons (+) and neutrons (x)

Attract electrons (-)

\(n \) of protons determines element:

\(n = 1p \quad \text{He} = 2p \quad \text{U} = 92p \)

\(n \) of neutrons can vary: O has 8p but can have 8, 9, or 10 neutrons leading to slightly different types of O (isotopes)

Atoms usually have same \(n \) of p and e'

Ion if different \(n \) of p & e'

Ions: process which removes e', creating ion (knock away e' with high energy photon = photoionization)

Molecules: atoms bound together which share e'
The Bohr Model

H has 1 e\(^{-}\) and 1 p. Spectrum has pattern of lines from 656 nm to 364 nm, called the Balmer series (after the person who discovered formula for calculating it in 1885).

Niels Bohr understood mathematically/physically e\(^{-}\) can have specific orbits (n=1, 2, 3, 4, ...). To move from 1 level to another, e\(^{-}\) must lose or gain a specific amount of energy.

Outer - inner (4-1): e\(^{-}\) must lose energy
Inner - outer (1-3): e\(^{-}\) must gain energy

Doppler Shift

Spectral lines shifted due to motion

Doppler shift for sound and light (because light is a wave)

Motion towards source (or source towards you)
compresses wavelength \(\Rightarrow\) shorter wavelength
= bluer light (blueshift)

Motion away from source (or source away from you)
stretches wavelength \(\Rightarrow\) longer wavelength
= redder light (redshift)

\[
\frac{\lambda_{\text{observed}} - \lambda_{\text{emitted}}}{\lambda_{\text{emitted}}} = \frac{\Delta \lambda}{\lambda_{\text{emitted}}} = \frac{v}{c}
\]