Astronomy 113
Dr. Joseph E. Pesce, Ph.D.

The Nature of Stars

8-2
Parallax

For "nearby" stars - measure distances with parallax

\[d = \frac{1}{p} \text{ [arcsec]} \text{ [pc]} \]

- \(p \gtrsim 1 \) arcsec
- Using satellites, can measure to \(\text{d} \gtrsim 1,000 \text{pc} \)

8-3
Brightness

- Apparent Magnitude (log scale - the eye's response)
- Bright
- Faint
- 1 magnitude = 2.5 times real brightness (so 1 to 6 is 100 times difference: \(2.5^5 = 100 \))
- Magnitudes can be negative too. So,
 - Sun = -25
 - Moon = -12
 - Sirius = 0

Faintest objects = +30 (with HST, for example)

8-4
Magnitudes

- Apparent magnitude (m) is not "real" brightness
- Apparent brightness decreases inversely with square of distance - the "inverse square law".
- Double distance — apparent brightness decreases \((1/2)^2 = 1/4\)
- Triple distance — \((1/3)^2 = 1/9\)

Need to be able to compare real brightness, so correct for distance

- Absolute magnitude (M) = apparent magnitude an object would have if it were at 10 pc
- Sun = +4.8 (range for stars: -10 to +17)
- Measure m and d, then: \(M = m - 5 \log(d/10) \)

8-5
Inverse-square Law

- Insert figure
8-6

Luminosity

- Absolute magnitude is related to Luminosity (the physical brightness of an object).
- Solar luminosity = 3.9×10^{26} Watts
- Call this 1 L

Stars with:
- M = -10 have 10^{6} L
- M = +17 have 10^{3} L

8-7

Stellar Temperatures

- Remember Wien’s law? ($\lambda_{\text{max}} = 1/T$; color related to surface temperature)
- Use a photometer to measure light intensity and filters to measure intensity at different bands:
 - U (UV), B (blue), V (visual)
 - That is, 3 apparent magnitudes which tell us where most energy in spectrum is (B-V = color index; if small, object is blue, if large, it is red)

8-8

Spectral Types

- A star’s surface temperature determined from color index or spectral line strengths.
- In the 1920s, Cecilia Payne classified stars based on spectral features visible (and ordered them by surface temperature).
- Spectral types:
 - O B A F G K M
 - Sun = G2
 - Further subdivided: B0 – B9
 - Hottest: HeII (singly ionized) SiIV (triply ionized)
 - Coolest: Molecules (TiO)

8-9

Spectral Types

- Spectral type figure

9-1

The Hertzsprung-Russell Diagram

- Supergiants
- Giants
- Sun
- Main Sequence
- White Dwarfs

Types of Stars
The Hertzsprung-Russell Diagram

- Pattern when color-index is plotted against absolute magnitude
- Also called "Color-Magnitude" diagram

Surface Temperature and Absolute Magnitude are Related!

- Main Sequence: 90% of stars in Solar neighborhood are on Main Sequence (called "dwarf" stars)
 - M-type stars most common
 - O-type stars rarest
 - Most M.S. stars are like the Sun

The Hertzsprung-Russell Diagram

- Insert figure

Giants

- From Stefan-Boltzmann Law: $E = T^4$
- Cool objects radiate less E than hot (per unit surface area)
- So, for Giants to be so bright, they must be huge!

$T \sim 3,000 - 6,000K$

$R \sim 10 - 100x$ Solar Radius

Red Example: Arcturus

Supergiants

- Even bigger and brighter than Giants
- Example: Betelgeuse
- 1% of all stars in Solar neighborhood

9% of stars in Solar neighborhood are "white dwarfs" - more later

Binary Stars

- Two stars gravitationally bound
- Orbital motion of binaries shifts spectral lines (Doppler Shift)

Eclipsing Binaries

- We see stars along their orbital plane
- Causes effects in light curve:

Total eclipses allow us to measure radii of stars
Stellar Masses

How do you measure mass?

Newton’s adaptation of Kepler's Law:

$$M_1 + M_2 = \frac{a^3}{p^2}$$

(both measured in binaries)

Mass-Luminosity Relationship:

On the Main Sequence, the more massive a star, the more luminous

Contact Binaries

- Roche Lobe - Sphere of gravitational influence
 - “Detached” Binaries
 - “Semi-detached” Binaries
 - “Contact” Binaries

The Sun

- The nearest star - easiest to study - use as a model
 - The Atmosphere
 1. Photosphere - the visible layer (about 400km thick)
 - Low density (0.01% of our atmosphere at sealevel)
 - Perfect blackbody at 5800 K
 - Can’t see below
 - Features:
 - Granulation
 - Limb Darkening
 2. Chromosphere - layer of less dense gas above the photosphere (about 500km thick)
 - T ~ 4000 K
 - Features:
 - Spicules - spikes or jets of gas
 3. Corona - uppermost layer of atmosphere; extends to millions of km
 - Very low density
 - Can be seen during eclipses
 - T = 2 x 10^6 K
 - Heated by magnetic fields
 - So hot particles have high velocities and escape as solar wind (p & e): 1 million tons per second!!

The Sun
The Sun

The Atmosphere
- Sunspots - cooler regions on surface (where magnetic fields exit and enter Sun)
 - Follow an 11-year cycle
 - 10,000s km (Earth-sized)
 - Last days - month
 - Can determine Sun's rotation rate
 - Differential rotation: Equator rotates more rapidly than poles (25 day - 35 day)
 - Further proof Sun is gaseous
- Solar Flares - eruptions of charged particles and radiation

The Solar Interior

The Energy source - (18th cent. View - coal, etc)
- Thermonuclear Reactions
 - \(E = mc^2 \)
 - Fusion in core
 - Because \(P (3 \times 10^{11} \text{ atm}) \) and \(T (2 \times 10^7 \text{ K}) \) are so high, protons stick (H = 1p 1n & He = 2p 2n), so:
 \[
 4 \text{ H} \rightarrow \text{He} + \text{energy} + \text{neutrinos}
 \]
 For this reaction: \(E = 4 \times 10^{13} \text{ J} \) (enough to light a 10W lightbulb for \(5 \times 10^{12} \) seconds!)
 But the Sun's luminosity is \(\sim 4 \times 10^{26} \text{ W/sec} \)!
 600 million metric tons/sec of Hydrogen is being converted into Helium!!

We use models to understand what's happening in the interior.

Fusion

In the sun, 300 million times of Hydrogen/sec - 170,000 yrs to consume mass of earth in 10 billion years...
Neutrinos

Nearly massless subatomic particles. Produced in huge quantities during fusion and supernovae.

- Important for cosmological reasons and understanding of nuclear fusion
- Billions of them pass through every square centimeter all the time - yes, even now!
- Weakly interacting: can pass through 1 light year of lead without interacting with a lead atom!! (Luckily for us)
- Can be detected

The Solar Interior

- Hydrostatic Equilibrium
 - Balance of force of gravity, which tries to squeeze Sun, and radiative pressure from fusion, which tries to blow apart Sun

- Radiative transport
 - Energy transported outward by photons
 - High P, High T create High E photons (γ-rays)
 - But High P keeps them in, leading to a Random Walk - photons collide, lose E, eventually fly free (after 10^6 yrs) from photosphere as visible photons

Interior of Sun

Transport of energy

Radiative (= photons) + Convection

"Random walk": γ-ray to visible (Infrared)