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T he insulating state is the most basic 
electronic phase of matter. It is 
characterized by an energy gap for 

electronic excitations, which makes it 
electrically inert at low energies. As they 
report in Nature, Hsieh et al.1 have now 
observed a new kind of insulator — dubbed 
a ‘topological insulator’ — that has unique 
conducting states bound to its surface. These 
surface states are unlike any other known 
two-dimensional electron system, and 
could be used to test proposed schemes for 
topological quantum computation.

One of the triumphs of quantum 
mechanics in the twentieth century was the 
development of the band theory of solids. 
An insulator has a band structure in which 
occupied and empty bands are separated by 
an energy gap. The existence of an energy gap, 
however, does not guarantee that a material 
is a simple insulator. A counterexample 
is the two-dimensional integer quantum 
Hall state, which has an energy gap due 
to the quantization of electronic states 
in a magnetic field. Despite the gap, this 
state is not a conventional insulator, but 
rather has a quantized Hall conductivity. 
The classification of distinct insulating 
band structures was pioneered in 1982 by 
Thouless and colleagues2, who showed that 
the quantized Hall conductivity defines an 
integer topological invariant. This invariant 
is insensitive to small changes in the band 
structure, and can only change at a phase 
transition where the energy gap vanishes.

Quantum Hall states require the 
presence of a magnetic field, which leads 
to a violation of time-reversal symmetry. 
In the past few years, a new class of time-
reversal-invariant topological insulators, 
which are distinguished by a different 
topological invariant, has been predicted for 
two-dimensional3 and three-dimensional4–6 
crystals. The two-dimensional state, first 
predicted in graphene7, is known as a 
quantum spin Hall insulator. This state was 

subsequently predicted8 to exist, and was 
then observed9, in HgxCd1−xTe quantum 
wells. In 2007, Liang Fu and I predicted 
that the semiconducting alloy Bi1−xSbx is a 
three-dimensional topological insulator10. 
In their experiment, Hsieh et al.1 probed 
the surface of Bi1−xSbx using angle-resolved 
photoemission spectroscopy, and found the 
signature of the topological insulator state in 
the observed surface states.

A distinctive property of topological 
insulators is the existence of gapless states 
on the sample boundary. Such states always 
occur at the spatial interface between regions 
that are in different topological classes. This 
is easiest to see by imagining a smooth limit 
where the band structure slowly interpolates 
as a function of position between the two 

sides. Somewhere along the way the energy 
gap has to vanish; otherwise the two sides 
would be in the same class. Gapless states 
are thus bound to the interface. The surface 
of a crystal can be viewed as an interface 
with the vacuum, which, like a conventional 
insulator, is in the trivial topological class. 
This guarantees the existence of gapless states 
on the surface (or edge) of a non-trivial 
insulator. These states are well known in the 
quantum Hall effect, which has gapless one-
dimensional edge states that are unique in 
that they propagate in one direction only. It is 
impossible to have such states in an isolated 
one-dimensional system.

Unlike the quantum Hall effect in 
which the topological invariant is an integer, 
the invariant distinguishing a topological 

Experiment has now proved the existence of the predicted three-dimensional ‘topological 
insulator’ in the semiconducting alloy Bi1−xSbx.

Figure 1 the surface of a topological insulator. a,b, the surface in real space (a) and in reciprocal space (b), where 
momentum vectors k in the surface Brillouin zone define Kramers degenerate points, Γ1–4. c,d, Surface state dispersion 
between two Kramers degenerate points: in c, the number of surface states crossing the Fermi energy EF is even, 
whereas in d it is odd. an odd number of crossings leads to topologically protected metallic surface states.
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insulator has only two possible values. This 
is easiest to understand by considering 
the surface of a crystal (Fig 1a). Surface 
states can exist within the bulk energy gap, 
and they disperse with momentum k in a 
two-dimensional Brillouin zone. According 
to Kramers’ theorem, time-reversal 
symmetry requires that all states come in 
degenerate pairs, at k and –k. There are 
four special momenta, Γa=1–4, where k and 
–k coincide (Fig. 1b) — as well as k = 0, the 
periodicity of the Brillouin zone creates three 
additional points.

At k = Γa, the surface states are doubly 
degenerate. Between any pair Γa,b, the 
degeneracy is lifted by spin–orbit interactions. 
As shown in Fig. 1c,d, there are two distinct 
ways in which the states can connect. In the 
trivial case (Fig. 1c), it is possible to eliminate 
the surface states by pushing all of the bound 
states out of the gap. Between Γa and Γb, the 
bands will intersect the Fermi energy an 

even number of times. In contrast, in Fig. 1d 
the edge states cannot be eliminated. The 
bands will intersect the Fermi energy an odd 
number of times — a number that cannot 
be zero. Which of these alternatives occurs 
is determined by the topological class of the 
bulk band structure. In a strong topological 
insulator, the Fermi surface for the surface 
states encloses an odd number of degeneracy 
points. This is impossible in an ordinary 
two-dimensional electron system. The surface 
of a topological insulator defines a new two-
dimensional ‘topological metal’ phase.

In their photoemission work, Hsieh et al.1 
registered an odd number of surface bands 
crossing the Fermi energy between two 
degeneracy points (as in Fig. 1d), which 
establishes that Bi1−xSbx is a strong topological 
insulator. This observation opens the door 
to a variety of experiments for probing the 
electronic and magnetic properties of this 
new electronic state. A particularly tantalizing 

prospect is that the proximity effect between 
an ordinary superconductor and the surface 
states of a topological insulator leads to a 
state that supports non-abelian excitations11, 
which could be used for fault-tolerant 
quantum computation12. Observation of 
such excitations would be a first step towards 
realizing this goal.
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the path to agreement

But to what degree Schrödinger 
proved the equivalence between the two 
frameworks has been the subject of some 
recent debate — is it actually a ‘myth’ that 
Schrödinger established the equivalence 
of matrix mechanics and wave mechanics, 
that is, that they describe the same 
physics? Contributing to the discussion, 
Slobodan Perovic argues that providing a 
fully fledged general proof was never the 
goal of Schrödinger’s paper (Studies in 
History and Philosophy of Modern Physics 
doi: 10.1016/j.shpsb.2008.01.004; 2008).

Werner Heisenberg’s trip to Heligoland 
in June 1925 is a legend. Plagued by 
hay fever, the 23-year old escaped to 
the pollen-free island in the North 
Sea, to return with deep insight that 
would change the way we think about 
quantum mechanics. Electrons in 
atoms, he came to realize, do not move 
in sharp orbits with definite radii and 
periods of rotation. As a consequence, 
their motion should not be described 
by a coordinate that depends on 
time, but by an array of transition 
amplitudes. Heisenberg, Max Born and 
Pascual Jordan — Paul Dirac made 
independent contributions — expanded 
the approach into what would become 
known as the matrix-mechanics 
formulation of quantum mechanics.

Only a year later, Erwin Schrödinger 
(pictured) presented a different 
formalism: wave mechanics, which 
uses a vastly different mathematical 
language — differential equations 
rather than the algebraic approach 
of matrix mechanics. Already 
Schrödinger was considering the 
relation between his own theory 
and the quantum mechanics of 
Heisenberg, Born and Jordan. In 
1926, in a paper originally published 
in Annalen der Physik, he presented 
arguments leading to the conclusion 
that the two so different approaches are 
indeed equivalent.

Rather, in Perovic’s view, the 
case has to be discussed in a specific 
context — the context of Niels Bohr’s 
model of the atom. Both matrix 
mechanics and wave mechanics were 
constructed against the background 
of Bohr’s model, and Schrödinger’s 
main goal was, according to Perovic, 
to establish the coherence of the two 
approaches with that model. This served, 
not least, to underline the significance 
of wave mechanics. Matrix mechanics, 
after all, had been more successful in 
explaining the spectral lines of the 
hydrogen atom — a fact that explains, 
in part, why Schrödinger focused on 
showing explicitly (and successfully) 
how matrices can be constructed 
from eigenfunctions, whereas he 
only sketches rather than proves the 
reciprocal equivalence.

The full proof of the mathematical 
equivalence of matrix mechanics 
and wave mechanics followed only 
a couple of years later, notably after 
the Copenhagen interpretation was 
framed. This influential interpretation 
of quantum mechanics is rooted in the 
equivalence of the two approaches — but 
an equivalence, Perovic argues, in the 
context of Bohr’s model, rather than 
the full proof of the isomorphism of the 
mathematical frameworks underlying 
the approaches.

 Andreas Trabesinger
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