Strongly Correlated Physics With Ultra-Cold Atoms

Predrag Nikolić

Rice University
Acknowledgments

Collaborators
- Subir Sachdev
- Eun-Gook Moon
- Anton Burkov
- Arun Paramekanti

Sponsors
- W.M. Keck Program in Quantum Materials
- National Science Foundation
Overview

- Ultra-cold atoms: the new frontier in strongly correlated physics
- Interacting fermions in the unitarity limit
- BCS-BEC crossover in uniform systems
- BCS-BEC crossover in optical lattices
- Rotating fermion quantum liquids near unitarity
- “Unification” with condensed matter
- Conclusions
The new frontier in strongly correlated physics

- Many-body physics: collective phenomena of many particles, $N \gg 1$
 - Examples: Fermi liquid, Bose-Einstein condensate (BEC)

- Strongly correlated physics: inadequate single-particle description
 - Phenomena caused by interactions
 - Hidden identity of individual particles (emergent phenomena)
 - Examples: Mott insulators, superfluidity

- Condensed matter physics
 - The physics of many-body and strongly correlated systems
Recent breakthroughs in atomic physics

- 1995: Bose-Einstein condensate
- 1998: Feshbach resonance
- 1999: Degenerate Fermi gas
- 2000: Vortex lattice
- 2002: Optical lattice SF-Mott
- 2003: Fermion condensates
- 2004: Tonks-Girardeau gas
- 2004: BEC-BCS crossover
- 2006: Correlations (statistics, KT...)

Images from Greiner and Ketterle labs
Ultra-cold fermions

- **Fermions**
 - Lithium \(^{6}\text{Li}\), Potassium \(^{40}\text{K}\)
 - Two lowest hyperfine-split states: “spin” up and down

- **Trapping**
 - Magnetic (Zeeman effect), optical: \(N \sim 10^4 - 10^6\)

- **Cooling**
 - Laser cooling (Doppler shift): \(T \sim 100\text{mK}\) + Sisyphus: \(T \sim 10\text{mK}\)
 - Evaporative: \(T \sim n\text{K}\) \(T_f \sim \mu\text{K}\)

- **Probing**
 - Absorption images (density), spectroscopy, interference
Strongly correlated fermions

- Feshbach resonance
 - Resonant two-body scattering
 - Scattering length exceeds inter-particle distance

- Optical lattice
 - Suppressed kinetic energy, interactions win
 - Superfluid-insulator transition

- Fast rotation
 - Quantum liquids, quantum Hall effect
 - Vortex lattices, KT transition

Images from Ketterle lab
Challenges ahead

Help us understand condensed matter materials
 - One dimensional physics
 - Correlated insulators (Mott, antiferromagnets)
 - Superconductivity in large magnetic fields (FFLO)
 - Cuprates, frustrated magnets, quantum computing...

Physics not accessible in condensed matter materials
 - BEC-BCS crossover
 - Pauli-Clogston limit & FFLO states
 - Exotic phases of matter (topological phases)
Interacting fermions in the unitarity limit

- Universality: irrelevant microscopic details
 - a many-body effect near a 2nd order phase transition
 - “unitary” scattering

\[\sigma \approx 4\pi a^2 \quad , \quad ka \ll 1 \]

\[\sigma \approx 4\pi a^2 \left(1 - \frac{\tan(\alpha_0 a)}{\alpha_0 a} \right) \quad , \quad ka \ll 1 \]

\[\sigma \approx \frac{4\pi}{k^2 + \alpha_0^2 \cot(\alpha_0 a)} \approx \frac{4\pi}{k^2} \quad , \quad \alpha_0 = \sqrt{2mV_0} \]
Quantum field theory at unitarity

\[S = \int d\tau d^d x \left[\psi_i^{\dagger} \left(\frac{\partial}{\partial \tau} + \frac{(-i \nabla - A)^2}{2m} - \mu + V(\mathbf{x}) \right) \psi_i \right. \\
+ h \left(\psi_i^{\dagger} \psi_i^{\dagger} - \psi_i^{\dagger} \psi_i \right) + N \frac{m\nu}{4\pi} \Phi^{\dagger} \Phi + \Phi^{\dagger} \psi_i \psi_i^{\dagger} + \Phi \psi_i^{\dagger} \psi_i
\]

Theoretical Approaches
- Mean-field approximation
- Perturbation theory
- Renormalization group

BCS-BEC crossover in uniform systems

- Attractive interactions & pairing correlations
 - Weak \Rightarrow many-body “bound” state, BCS superconductor
 - Strong \Rightarrow two-body bound state, BEC condensate of molecules

- Unitarity limit @ Feshbach resonance
 - The strongest pairing correlations and quantum entanglement
 - Novel state uniquely accessible in atomic physics

- Fundamental questions
 - The evolution of states between BCS and BEC limits
 - New quantum phases
Rice: polarized fermionic superfluids

G.B.Partridge, W.Li, R.I.Kamar, Y.A.Liao, R.G.Hulet
Science 311, 503 (2006)

G.B.Partridge, W.Li, Y.A.Liao, R.G.Hulet, M.Haque, H.T.C.Stoof
MIT: polarized fermionic superfluids

T=0 phase diagram with population imbalance

- 1st order superfluid-metal transitions: \(h_c = 0.807\mu + O(1/N) \)
- 2nd order superfluid-insulator (vacuum) transition
- Smooth BEC-BCS crossover
- Uniform magnetized BEC superfluid phase for \(\mu < 0 \)
- Normal metallic phases with one or two Fermi seas

Pairing fluctuations in $T=0$ normal states

- Pairing fluctuations increase pressure
- Longer-lived pairs \rightarrow larger pressure
- No pressure increase in the fully polarized state
Superfluid critical temperature

- 2nd order superfluid-normal phase transition at $T=T_c$

\[
\frac{\mu}{T_c} = 1.50448 + \frac{2.785}{N} + \mathcal{O}(1/N^2) \quad \text{N=1 \ MC}
\]

\[
\frac{\varepsilon_F}{T_c} = 2.01424 + \frac{5.317}{N} + \mathcal{O}(1/N^2) \quad \text{7.33124 \ 6.579}
\]

\[
\frac{P/N}{(2m)^{3/2}T_c^{5/2}} = 0.13188 + \frac{0.4046}{N} + \mathcal{O}(1/N^2) \quad \text{0.53648 \ 0.776}
\]

Monte-Carlo:
BCS-BEC crossover in lattice potentials

- 2nd order superfluid-insulator phase transition at $T=0$, $\hbar=0$
- Band-Mott insulator crossover at unitarity (s-wave)

Critical lattice depth

- Saddle-point approximation
 - Diagonalize in continuum space near unitarity
 - Single-band Hubbard models: only deep in BCS or BEC limits...
 - Fix density - completely filled bands

\[V_c = \frac{\hbar^2}{ma_L^2} F_n(a_L \nu) \]

At unitarity:

- Our result: \(V_c \sim 70 E_r \)
- MIT experiment: \(V_c \sim 6 E_r \)

Finite temperature effects?
Critical velocity and “band”-supersolids

- Uniform system
 - Superfluid-metal: pairing at $q=0$
 - Universal critical velocity

$$q/\pi \approx 0.58 \sqrt{2m(\mu - \mu_0)}$$
$$\mu_0 \approx 1.48T$$

- Lattice system
 - Superfluid - band-insulator: pairing instability at $q \neq 0$

P. Nikolić, A. Burkov, A. Paramekanti; (unpublished)
“Band”-supersolid
- The effect of pairing between different bands
- Lattice symmetry breaking in the insulator due to pairing fluctuations?

Unconventional Mott insulators
- Extended repulsive interactions (Coulomb, unitarity?)
- Fractional number of Cooper pairs per site
- Spontaneous lattice symmetry breaking

Transition to superfluid
- Conventional (Landau-Ginzburg) \rightarrow supersolid
- Unconventional: deconfined critical point
Rotating fermion liquids near unitarity

- No time-reversal symmetry: quantum limit
 - Superfluid \rightarrow vortex lattice
 - Fermi liquid \rightarrow fermionic quantum Hall state
 - Correlated insulators \rightarrow many possibilities

- Strongly correlated quantum insulators
 - Quantum Hall liquid of Cooper pairs
 - Density wave (Wigner crystal) of Cooper pairs

- Finite temperature, disorder
 - Phase transitions or crossovers between different normal states?
 - Critical fluctuations
Insulators and superfluids

- Normal state \(\rightarrow\) quantum Hall insulator
 - Localized particles (cyclotron orbitals)
 - Discrete Landau levels
 - Macroscopic degeneracy: two particles per flux quantum

Superfluid

\[
\Phi((r)) = \Delta_0 e^{-2m\omega y^2} \theta_3 \left(\left(\pi \sqrt{3} m\omega \right)^{\frac{1}{2}} (x + iy) \right) e^{i\pi/3}
\]
Pairing instability

- Quantum Hall \rightarrow superfluid
- 2^{nd} order (saddle-point)

Superfluids & Vortex lattice FFLO states

- Competing forces
 - Pairing, orbital, Zeeman
- FFLO-metals and FFLO-insulators

P.Nikolić; (unpublished)
Experimental signatures

- Trapped gasses
 - Sharp shell boundaries
 - FFLO: $\rho_s \neq 0 \& p \neq 0$
 - FFLO-insulator: quantized p
 - FFLO-metal: variable p

- Features
 - Polarized outer shells
 - FFLO rings, abrupt appearance

\[P = \frac{N_\uparrow - N_\downarrow}{N_\uparrow + N_\downarrow} \]
Vortex liquid

- Genuine phase at $T=0$
 - Vortex lattice potential energy: Δ^4_0
 - Melting kinetic energy gain: $\log^{-1}(\Delta_0)$
 - 1st order vortex lattice melting as $\Delta_0 \rightarrow 0$
 - Low energy spectrum inconsistent with fermionic quantum Hall states
 - Non-universal properties (by RG)

“Unification” with condensed matter

- **Unification**
 - Particle physics → “truth” is at high energies
 - Condensed matter → “truth” is at low energies

- **Universal collective many-body phenomena**
 - cold atoms exhibit similar phenomena as electronic systems
 - cold atoms are “ideal” and exceptionally tunable
 - “solvable” theories which can be compared with experiments
 - much to learn about probing

- **Some unresolved problems**
 - Hubbard model
 - Pseudogap in cuprates
 - Frustrated magnets & exotic phases
Pseudogap in cuprates

- “Fluctuating” superconductivity
 - Massless Dirac fermions
 - Lattice + Coulomb repulsion + pairing
 - d-wave \rightarrow no vortex core states
 - Light, friction-free vortices
 - Quantum vortex dynamics

- Competing orders
 - Due to vortex quantum motion

Quantum motion of vortices

- Theory of vortices and quasiparticles

P.N., S.Sachdev; Physica C 460, 256 (2007)

Unconventional phases

• Search for unconventional phases of matter
 • Engineering custom quantum systems
 • Ideal lattices, very little relaxation...
 • Tunability
 • Measurement techniques?

• Unconventional physics
 • Valence-bond solids, spin liquids
 • Topological phases
 • Quantum computing

Conclusions

- **Unitarity**
 - Novel strongly correlated physics, universality
 - BCS-BEC crossover with population imbalance

- **Interacting fermions in lattice potentials**
 - Band-Mott insulator crossover at unitarity
 - Supersolids & novel Mott insulators

- **Fast-rotating interacting fermions**
 - Vortex lattices & FFLO states
 - Vortex liquids
New phases due to Zeeman effect

- Breakdown of superconductivity
- Pauli-Clogston limit: $\mu_\uparrow - \mu_\downarrow \sim \Delta$

FFLO: non-uniform magnetized superfluid

Breached pair (Sarma) phase

$Q = k_{F\uparrow} - k_{F\downarrow}$

$Q = 0$