Unitarity in lattices and Cooper pair insulators

Predrag Nikolić

George Mason University
Acknowledgments

Collaborators

Zlatko Tešanović Anton Burkov Arun Paramesekanti

Affiliations and sponsors

The Center for Quantum Science

George Mason University NIST

INSTITUTE FOR QUANTUM MATTER

2/34
Overview

- Introduction and motivation
- Unitarity in lattice potentials (renormalization group)
- Cooper pair insulators (“pseudogap” at $T=0$)
- Applications: re-entrant SC, PDW, topological insulators, cuprates...
- Conclusions
Introduction and motivation

- The quest for universality
 - Common phenomena independent of complicated microscopic details
 - The fundamental principle behind understanding things

- Universality in fermionic systems
 - In metals: Fermi surface instabilities (not a subject of this talk)
 - In band insulators: scattering resonances and pairing ... unitarity
 - In correlated states with emergent degrees of freedom

- Can unitarity teach us about:
 - The birth of some correlated states in atomic and electronic materials?
 - “Unconventional” superconducting transitions?
Universality from band insulators

- Gapped interacting fermionic excitations
 - A direct path to correlated states in which...
 - … low-energy bosons dominate dynamics

The simplest setup
- A band insulator with short-range interactions
- Weak: BCS pairing transitions
- Strong: “unconventional” transitions in bosonic universality classes
- Fixed points describe scattering resonances

Applicability
- Cold atoms in lattice potentials
- PDW and topological insulators
- High-temperature superconductors?
Quantum vortex liquid in cuprates?

- Vortices in the normal phase of cuprates, even at $T=0$

La$_{2-x}$Sr$_x$CuO$_4$

T_{onset}, T^*

Vortices in superconductors

- “Fluctuating” d-wave superconductivity
 - Massless Dirac fermions
 - d-wave \rightarrow no vortex core states
 - Small cores
 - Light and friction-free vortices
 - Quantum vortex dynamics

- Conventional BCS superconductivity
 - s-wave \rightarrow vortex core states
 - Large cores
 - Heavy vortices, large friction
 - Semi-classical vortex dynamics

Unitarity: two-body picture

- Universality: irrelevant microscopic details
- Two-body resonant scattering
- Bound state at zero energy

\[\sigma \approx 4\pi a^2 \quad , \quad ka \ll 1 \]

\[\sigma \approx 4\pi a^2 \left(1 - \frac{\tan(\alpha_0 a)}{\alpha_0 a}\right) \quad , \quad ka \ll 1 \]

\[\sigma \approx \frac{4\pi}{k^2 + \alpha_0^2 \cot(\alpha_0 a)} \approx \frac{4\pi}{k^2} \quad , \quad \alpha_0 = \sqrt{2mV_0} \]
Unitarity: many-body picture

\[S = \int d\tau d^d x \left[\psi_{i\alpha}^\dagger \left(\frac{\partial}{\partial \tau} + \frac{(-i \nabla - A)^2}{2m} - \mu + V(x) \right) \psi_{i\alpha}
ight. \\
+ h \left(\psi_{i\uparrow}^\dagger \psi_{i\uparrow} - \psi_{i\downarrow}^\dagger \psi_{i\downarrow} \right) + N \frac{m \nu}{4\pi} \Phi^\dagger \Phi + \Phi^\dagger \psi_{i\downarrow} \psi_{i\uparrow} + \Phi \psi_{i\uparrow}^\dagger \psi_{i\downarrow}^\dagger \left. \right] \]

- Universality
- Quantum critical point
- Zero density, $T=0$

New fixed points in lattice potentials

- Unitarity at finite densities
 - Every band insulator is a vacuum of particles and holes

- SF-I pairing transitions
 - (p) … particle dominated
 - (h) … hole dominated
 - (ph) .. relativistic

- Tuning parameters
 - Chemical potential μ
 - Interaction strength ν
 - Lattice depth V
Transitions involving only particles (holes)

- **Effective action**

\[
S = \int \mathcal{D}k \ f_{k,\alpha}^{\dagger} (-i\omega + E(k)) f_{k,\alpha} + U \int \mathcal{D}k_1 \mathcal{D}k_2 \mathcal{D}q \ f_{k_1,\alpha}^{\dagger} f_{k_1+q,\alpha} f_{k_2,\beta}^{\dagger} f_{k_2-q,\beta}
\]

\[
E(k) = E_0 + \frac{k^2}{2m} \quad E_g = E_0 + U
\]

- **Exact renormalization group**

\[
\frac{dE_g}{dl} = 2E_g \quad , \quad \ldots \quad = 0
\]

\[
\frac{dU}{dl} = (2 - d)U - \Pi U^2 + \ldots
\]
Transitions involving only particles (holes)

- Fixed points & RG flow
 - $d<2$: Gaussian & Tonks-Girardeau
 - $d=2$: “Gaussian”
 - $d>2$: Gaussian & Unitarity

- Run-away flow for $U<U^*<0$
 - Asymptote at a finite l
 - High-energy pairing
 - bound-state pairs
 - BEC regime

- BCS: $U^*<U<0$

\[
U(l) = \begin{cases}
\frac{U(0)}{1 + \Pi U(0)} & , \quad d = 2 \\
\frac{U(0)}{[1 + \Pi U(0)]e^l - \Pi U(0)} & , \quad d = 3
\end{cases}
\]
Transitions involving both particles and holes

Effective action

\[S = \sum_n \int \mathcal{D}k \ f_{n,k,\alpha}^\dagger (-i\omega + E_n(k)) f_{n,k,\alpha} \]

\[+ \sum_{n_1 m_1} \sum_{n_2 m_2} U_{n_1 n_2}^{m_1 m_2} \int \mathcal{D}k_1 \mathcal{D}k_2 \mathcal{D}q \ f_{m_1,k_1+q,\alpha}^\dagger f_{n_1,k_1,\alpha} f_{m_2,k_2-q,\beta}^\dagger f_{n_2,k_2,\beta} \]

\[E_c(k) = E_{c0} + \frac{k^2}{2m_c} \]

\(n = c \ldots \text{conduction band} \)

\[E_v(k) = -E_{v0} - \frac{k^2}{2m_v} \]

\(n = v \ldots \text{valence band} \)

\[+ \text{scattering with one band-conversion ...} \]
Transitions involving both particles and holes

- Renormalization group: one loop, $\varepsilon = d-2$ expansion

- Band mixing
 - Generated by scattering with one band-conversion

\[
\begin{align*}
\text{Unitarity in lattices and Cooper pair insulators} & \\
(14/34)
\end{align*}
\]
Transitions involving both particles and holes

- RG equations with no band-mixing: admit analytical solution

\[
\frac{du_c}{dl} = \epsilon \left[-u_c - 4u_c^2 - 4u_e^2\right]
\]

\[
\frac{du_v}{dl} = \epsilon \left[-u_v - 4u_v^2 - 4u_e^2\right]
\]

\[
\frac{du_{cv}}{dl} = \epsilon \left[-u_{cv} + 2u_{cv}^2 + 8(1 - \beta^2)u_e^2\right]
\]

\[
\frac{du_m}{dl} = \epsilon \left[-u_m - 4u_m^2 + 4u_{cv}u_m\right]
\]

\[
\frac{du_e}{dl} = \epsilon \left[-u_e + u_e\left(-4u_c - 4u_v + 8u_{cv} - 4u_m\right)\right]
\]

\[
\frac{de_g}{dl} = 2e_g - \frac{2u_v}{1 - \beta} + \frac{2u_{cv}}{1 - \beta^2} - \frac{u_m}{1 - \beta^2}
\]

Unitarity in lattices and Cooper pair insulators
Transitions involving both particles and holes

- 17 fixed points with no band-mixing
 - Gaussian + 15 resonant scattering fixed points in various channels
 - A “pair-scattering” fixed point

Unitarity in lattices and Cooper pair insulators
Transitions involving both particles and holes

- Scattering resonances
 - BEC-BCS crossovers in various channels

Bound singlet of two conduction band or two valence band fermion

Bound singlet of a conduction and a valence band fermion

Exciton: bound singlet of a particle and hole

Assisted resonance?

Extended s-wave resonating singlet
RG summary

- Most general cases
 - Scattering resonances with multiple particle/hole species
 - Additional fixed points with band-mixing

- Unitarity universality classes
 - Universal ratios of observables
 - $(\mu, E_f, T_c, P ...)$
 - Slight modifications of the vacuum universality

- Global RG
 - Run-away flows in BEC limits
 - Strong-coupling fixed points

P.N., Arxiv:1006.2378 (2010)
Effective BEC regimes

- **RG run-away flow (bound states)**
 - Any interaction strength in $d=2$
 - Requires strong interaction in $d>2$

- **BEC regime: bound states**
 - Quasiparticles are gapped
 - Bosonic universality class for the SF transition
 mean-field or XY

- **BCS regime: no bound states**
 - BCS (pairing) transition
 - Must close the fermion gap in order to induce SF
Bosonic Mott Insulator

- Insulator adjacent to SF
 - BEC: Bosonic Mott
 - BCS: Band insulator

Bosonic Mott insulator
- No symmetry breaking (but not excluded either)
- Bosonic lowest energy excitations
- Large fermion gap

P.N., Zlatko Tešanović (unpublished)
Mott/band insulator distinction

- Quantum phase transition
 - Non-analytic change of the ground state manifold as a function of tuning parameters

- A generalization to the entire spectrum
 - Non-analytic change of the Hamiltonian (density matrix) as a function of tuning parameters

- Mott insulator “order parameter”

\[
\rho(E, \mathbf{P}) = \frac{1}{\mathcal{V}} \sum_n \delta(E - E_n)\delta(\mathbf{P} - \mathbf{P}_n)
\]

\[
\rho'(\mathbf{k}) = \lim_{\Delta \rightarrow 0} \lim_{\Delta_{p} \rightarrow 0} \int d\varepsilon \int d^d p \frac{1}{\mathcal{V}} \sum N \rho(N \varepsilon_k + \delta \varepsilon, N \mathbf{p}_k + \delta \mathbf{p})
\]
Non-equilibrium pairing transitions

- Cooper pair laser
 - Sharp non-equilibrium distinction between Mott and band insulators

- Numerics?
 - Quantum Monte Carlo
 - Negative-U Hubbard model

- Experiments?
 - SC / narrow bandgap material heterostructures
 - Superlattices
 - Cold atoms

P.N., Zlatko Tešanović (unpublished)
Non-trivial Mott insulators

- **Broken symmetries**
 - Pair density waves (particle-particle BEC)
 - Magnetic, nematic... (p-wave pairs?)
 - Density waves (particle-hole BEC)
 - Valence bond crystals (inter-valley particle-particle BEC)

- **Topological orders**
 - Fractional quantum Hall states with even-denominator filling factor
 - Fractional spin quantum Hall states?
 - Spin liquids
Superfluids in the quantum Hall regime

- Normal state \(\rightarrow\) quantum Hall insulator
 - Localized particles (cyclotron orbitals)
 - Discrete Landau levels
 - Macroscopic degeneracy: two particles per flux quantum

Superfluid

\[
\Phi((r)) = \Delta_0 e^{-2m\omega y^2} \theta_3 \left(\left(\pi \sqrt{3} m \omega \right)^{\frac{1}{2}} (x + iy) \right) e^{i\pi/3}
\]
No p_x dependence to all orders of $1/N$

- “charged” bosonic excitations live on degenerate Landau levels
- Macroscopically many modes turn soft simultaneously
- The nature of “condensate” is determined by interactions
Quantum vortex lattice melting

- **Vortex mass**
 - Compression of the stiff superfluid
 - Neutral:
 \[m_v \approx \frac{\rho_s}{s^2} \log \left(\frac{R}{\xi} \right) \]
 \[\rho_s, s^2 \propto |\Phi|^2 \]

- **Vortex localization energy**
 - \[E_{\text{kin}} \sim p^2/2m_v \quad \ldots \quad p^2 \sim B \]

- **Vortex lattice potential energy**
 - \(\Pi \) is degenerate \(\rightarrow E_{\text{pt}} \sim \Phi_0^4 \)

\[
\frac{\mathcal{F}(\Phi_0)}{N} = \frac{\mathcal{F}_0}{N} + \hat{\Pi}_{ij} \Phi_0^i \Phi_0^j + \hat{U}_{ijkl} \Phi_0^i \Phi_0^j \Phi_0^k \Phi_0^l + \mathcal{O}(\Phi^6)
\]

Unitarity in lattices and Cooper pair insulators
Vortex liquid

- Genuine phases at $T=0$
 - Vortex lattice potential energy: Δ_0^4
 - Melting kinetic energy gain: $\log^{-1}(\Delta_0)$
 - 1st order vortex lattice melting as $\Delta_0 \to 0$
 - Low energy spectrum inconsistent with fermionic quantum Hall states
 - Non-universal properties (by RG)

Unitarity in lattices and Cooper pair insulators
The nature of vortex liquids

Non-universal properties
- At Gaussian and unitarity fixed points of RG

\[S = \int d\tau d^{d-2}r_\perp \left\{ \sum_n \int \frac{dk_x}{2\pi} \psi_{n,k_x}^\dagger \left(\frac{\partial}{\partial \tau} + n\omega_c - \frac{\nabla^2}{2m} - \mu' \right) \psi_{n,k_x} + N \sum_{n_1n_2} \int \frac{dp_x}{2\pi} \Phi_{n_1,p_x}^\dagger \hat{\Pi}_{n_1,n_2}^{(0)} \Phi_{n_2,p_x} \right. \]

+ \left. g \sum_{nm_1m_2} \int \frac{dk_x dp_x}{2\pi} \frac{1}{\sqrt{B}} \Gamma_{m_1m_2}^n \left(\frac{k_x}{2} \right) \left[\Phi_{n,p_x}^\dagger \psi_{m_1,k_x+\frac{p_x}{2}} \psi_{m_2,-k_x+\frac{p_x}{2}} + \text{h.c.} \right] \right.

+ u_2 \sum_{m_1 \ldots m_4} \int \frac{dk_{x1} dk_{x2} dq_x}{2\pi} \frac{1}{2\pi} \Gamma_{m_1 \ldots m_4}^{m'} \left(k_{x1}, k_{x2}, q_x \right) \psi_{m_1,k_{x1}}^\dagger \psi_{m_2,k_{x2}}^\dagger \psi_{m_3,k_{x2}+q_x} \psi_{m_4,k_{x1}-q_x} \right\} + \cdots

- All interactions are relevant in \(d=2 \)
- Dimensional reduction
- Many stable interacting fixed points?

\[\frac{dg}{dl} = \left(3 - \frac{d}{2} \right) g - bNg^3 \]

\[\frac{du_n}{dl} = \left[d + (2 - d)n \right] u_n + \mathcal{O}(u^2) \]

BCS-BEC crossover in lattice potentials

- 2nd order superfluid-insulator phase transition at $T=0, \ h=0$
- Band-Mott insulator crossover at unitarity (s-wave)

Pair density wave

- Supersolid without the uniform component
- Pairing instability in a band-insulator **generally** occurs at a finite crystal momentum

\[
\Pi_{Gq;G'q'} = \sum_{n_1 n_2} \int \frac{d^3 k_1}{(2\pi)^3} \frac{d^3 k_2}{(2\pi)^3} \frac{f(\xi_{n_1 k_1}) - f(-\xi_{n_2 k_2})}{\xi_{n_1 k_1} + \xi_{n_2 k_2}} \Gamma_{n_1 k_1; n_2 k_2} \Gamma^*_{Gq; G'q'}
\]
PDW evolution

- **Incommensurrate PDW**
 - Vertex q-dependence
 - Weak coupling (BCS limit)

- **Commensurate PDW**
 - Energy q-dependence
 - Strong inter-band coupling
 - Halperin-Rice in p-p

Incommensurate supersolid?
- Pairing bubble has non-analytic linear q-dependence at small q
- Inconsistent with $q=0$ pairing ($\omega \sim \sqrt{|q|}$ Goldstone modes)
- Robust finite-q pairing against fluctuations
- But, frustrated on the lattice!

Fluctuation effects
- Stabilize a commensurate supersolid order?
- Looks like Mott physics!
- Are there non-trivial paired insulators?

Near the superfluid-insulator transition
- Fermions have a large (band) gap
- Collective bosonic modes are low energy excitations
- Charge conservation \Rightarrow infinite lifetime for gapped bosons
Cuprates, d-wave pairing and Mottness

- Microscopic mechanism in underdoped cuprates?
 - Short-range AF correlations \Rightarrow gap (antinodal)
 - Hole pair hopping doesn't frustrate spins
 \Rightarrow effective weak attractive interaction (antinodal)
 - Two-dimensional dynamics
 - Effective BEC regime for antinodal quasiparticles

- Consequences
 - Mottness adjacent to SC, quantum vortex dynamics...

- Complications due to d-wave
 - Nodal pairbreaking occurs, but anomalously slow
 - Low-energy bosons exist (superohmic decay) with large DOS
Conclusions

- Effective scattering resonances
 - “Weak-coupling” universality in generic band insulators
 - Particle-particle and particle-hole channels
 - Path to strongly correlated states of fermions

- Bosonic Mott insulators from fermions
 - Adjacent to superfluid phases in effective BEC regimes (especially 2D)
 - Susceptible to symmetry breaking or topological order

- Systems of interest
 - PDW in cold atom gases
 - Re-entrant superconductivity, topological insulators
 - Cuprates