Pairing Instability in 2D Rotating Fermion Liquids Near Unitarity

Predrag Nikolić
Motivation

- Vortex liquids
 - What are they?
 - How to obtain them?

- Re-entrant superconductivity
 - SC above H_{c2}

- FFLO states
 - Orbital+Zeeman effect

- Ultra-Cold atoms
 - Vortices & vortex lattices
 - Quantum Hall physics
 - Strong correlations near unitarity

Perturbation theory: $1/N$ expansion

\[
S = \int d\tau d^d x \left[\psi_{i\alpha}^\dagger \left(\frac{\partial}{\partial \tau} + \frac{(-i \nabla - A)^2}{2m} - \mu + V(x) \right) \psi_{i\alpha}
+ \hbar (\psi_{i\uparrow}^\dagger \psi_{i\uparrow} - \psi_{i\downarrow}^\dagger \psi_{i\downarrow}) + N \frac{m\nu}{4\pi} \Phi^\dagger \Phi + \Phi^\dagger \psi_{i\downarrow} \psi_{i\uparrow} + \Phi \psi_{i\uparrow}^\dagger \psi_{i\downarrow}^\dagger \right]
\]

\[\nabla \times A = B = \tilde{z} m \omega_c = \tilde{z} 2m \omega\]

- Feynman diagrams

 - Physical atom (fermion)
 - Cooper pair, molecule (boson)
 - Vertex
Pairing instability

\[
\Pi_{n,n'}(p_x, p_z, i\Omega) \propto \sum_{m_1,m_2} \int \frac{dk_z}{2\pi} \frac{dk_x}{2\pi} \frac{f(\varepsilon_{m_1,k_z+p_z/2}) - f(-\varepsilon_{m_2,-k_z+p_z/2})}{-i\Omega + \varepsilon_{m_1,k_z+p_z/2} + \varepsilon_{m_2,-k_z+p_z/2}} \times \\
\times \Gamma_{m_1,m_2}^n \left(\frac{k_x}{\sqrt{B}} \right) \Gamma_{m_1,m_2}^{n'*} \left(\frac{k_x}{\sqrt{B}} \right) + O \left(\frac{1}{N} \right)
\]

- No \(p_x \) dependence at all orders of \(1/N \)
- “charged” bosonic excitations live on degenerate Landau levels
- Macroscopically many modes turn soft simultaneously
- The nature of “condensate” is determined by interactions
Pairing instability

- Quantum Hall \to superfluid
- 2^{nd} order (saddle-point)

Quantum vortex lattice melting

- Vortex mass
 - Compression of the stiff superfluid
 - Neutral: \(m_v \approx \frac{\rho_s}{s^2} \log \left(\frac{R}{\xi} \right) \)
 \(\rho_s, s^2 \propto |\Phi|^2 \)

- Vortex localization energy
 - \(E_{\text{kin}} \sim p^2/2m_v \quad \ldots \quad p^2 \sim B \)

- Vortex lattice potential energy
 - \(\Pi \) is degenerate \(\rightarrow E_{\text{pot}} \sim |\Phi_0|^4 \)

\[
\frac{\mathcal{F}(\Phi_0)}{N} = \frac{\mathcal{F}_0}{N} + \hat{\Pi}_{ij} \Phi_0^i \Phi_0^j + \hat{U}_{ijkl} \Phi_0^i \Phi_0^j \Phi_0^k \Phi_0^l \right| O(\Phi^6)
\]
Vortex lattice melting

- Vortex lattice melts at finite Φ_0 as $\Phi_0 \rightarrow 0$
 - 1st order by Landau-Ginzburg

- Vortex liquid ground-state
 - Superposition of many vortex arrangements
 - Result of some “mixing” perturbation
 - Energy gain \rightarrow low energy bosonic levels split
 - Different structure (degeneracy) than in the fermionic quantum Hall states
 - A genuine quantum phase
Vortex liquid

- Genuine phase at $T=0$
 - Strongly correlated insulator
 - Cooper pairs are formed
 - Possibly destroyed at finite T

- Examples
 - Quantum Hall state $\nu=1/2$
 - Wigner crystal of Cooper pairs

The nature of vortex liquids

- Non-universal properties
 - At Gaussian and unitarity fixed points of RG

\[
S = \int d\tau d^{d-2}r_\perp \left\{ \sum_n \int \frac{dk_x}{2\pi} \psi_{n,k_x}^\dagger \left(\frac{\partial}{\partial \tau} + n\omega_c - \frac{\nabla^2}{2m} - \mu' \right) \psi_{n,k_x} + N \sum_{n_1n_2} \int \frac{dp_x}{2\pi} \Phi_{n_1,p_x}^\dagger \hat{\Pi}_{n_1,n_2}^{(0)} \Phi_{n_2,p_x} \right. \\
+ g \sum_{nm_1m_2} \int \frac{dk_x dp_x}{2\pi} \frac{\Gamma^n}{m_1m_2} \left(\frac{k_x}{\sqrt{B}} \right) \left[\Phi_{n,p_x}^\dagger \psi_{m_1,k_x+p_x/2} \psi_{m_2,-k_x+p_x/2} + \text{h.c.} \right] \\
+ u_2 \sum_{m_1\ldots m_4} \int \frac{dk_{x1} dk_{x2} dq_x}{2\pi} \frac{\Gamma'}{m_1\ldots m_4} \left(k_{x1}, k_{x2}, q_x \right) \psi_{m_1,k_{x1}}^\dagger \psi_{m_2,k_{x2}}^\dagger \psi_{m_3,k_{x2}+q_x} \psi_{m_4,k_{x1}-q_x} \left\} + \cdots
\]

- All interactions are relevant in \(d=2 \)
 - Dimensional reduction
 - Many stable interacting fixed points?

\[
\frac{dg}{dl} = \left(3 - \frac{d}{2} \right) g - bNg^3 \\
\frac{du_n}{dl} = \left[d + (2-d)n \right] u_n + \mathcal{O}(u^2)
\]
Competing forces
- Pairing, orbital, Zeeman
- FFLO-metals and FFLO-insulators

Strongly Correlated Physics With Ultra-Cold Atoms
Conclusions

- Rotating fermions near unitarity
 - Novel strongly correlated physics
 - Connections with cuprates

- Re-entrant superconductivity
 - Pairing in low Landau levels

- Vortex liquids
 - Strongly correlated quantum insulators of Cooper pairs
Perturbation theory: $1/N$ expansion

- Full bosonic propagator (Dyson equation)
 \[
 \begin{array}{c}
 \begin{array}{c}
 \quad = \frac{1}{N} \left[(\quad)^{-1} + \quad \right]^{-1}
 \\
 \quad = \quad + \quad + \quad + \quad + \quad + \ldots
 \\
 \end{array}
 \\
 \quad = \quad + \quad + \quad + \quad + \quad + \ldots
 \\
 \end{array}
 \]

- No natural small parameter
 - Semi-classical expansion: $N=\infty$ is mean-field approximation
 - Physical: $N=1$