Eclipses and the Motion of the Moon
Chapter Three

Guiding Questions
1. Why does the Moon go through phases?
2. Is there such a thing as the “dark side of the Moon”?
3. What is the difference between a lunar eclipse and a solar eclipse?
4. How often do lunar eclipses happen? When one is taking place, where do you have to be to see it?
5. How often do solar eclipses happen? Why are they visible only from certain special locations on Earth?
6. How did ancient astronomers deduce the sizes of the Earth, the Moon, and the Sun?

The phases of the Moon are caused by its orbital motion
• The phases of the Moon occur because light from the Moon is actually reflected sunlight
• As the relative positions of the Earth, the Moon, and the Sun change, we see more or less of the illuminated half of the Moon.
When this photo was taken, was the Moon waxing or waning as seen from Earth?
Time and the Moon

- Two types of months are used in describing the motion of the Moon.
- With respect to the stars, the Moon completes one orbit around the Earth in a sidereal month, averaging 27.32 days.
- The Moon completes one cycle of phases (one orbit around the Earth with respect to the Sun) in a synodic month, averaging 29.53 days.
Eclipses occur only when the Sun and Moon are both on the line of nodes.

Lunar eclipses can be either total, partial, or penumbral, depending on the alignment of the Earth, Sun, and Moon.
Solar eclipses can be either total, partial, or annular, depending on the alignment of the Sun, Earth, and Moon.

Table 3.1: Lunar Eclipses, 2006-2008

<table>
<thead>
<tr>
<th>Date</th>
<th>Type</th>
<th>Where visible</th>
<th>Duration of eclipse (in hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006 May 4</td>
<td>Total</td>
<td>North America, Europe, Africa, Asia, Australia</td>
<td>1 hr 35 min</td>
</tr>
<tr>
<td>2007 February 27</td>
<td>Partial</td>
<td>Asia, Australia</td>
<td>1 hr 35 min</td>
</tr>
<tr>
<td>2007 March 29</td>
<td>Partial</td>
<td>Europe, Africa, Asia, Australia</td>
<td>1 hr 35 min</td>
</tr>
<tr>
<td>2007 August 28</td>
<td>Total</td>
<td>Eastern Asia, Australia, Pacific, Americas</td>
<td>1 hr 35 min</td>
</tr>
<tr>
<td>2008 February 28</td>
<td>Partial</td>
<td>Asia, Australia, Europe, Africa</td>
<td>1 hr 35 min</td>
</tr>
<tr>
<td>2008 August 24</td>
<td>Partial</td>
<td>North America, Europe, Africa, Asia, Australia</td>
<td>1 hr 35 min</td>
</tr>
</tbody>
</table>

*Eclipse predictions by Fred Espenak, NMS/USNO Lunar Eclipse Group. All times are given in standard announced 1000 UTC, except when noted.

Solar eclipses can be either total, partial, or annular, depending on the alignment of the Sun, Earth, and Moon.
Annular Eclipse

![Annular Eclipse Image]

<table>
<thead>
<tr>
<th>Date</th>
<th>Type</th>
<th>Where visible</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004 April 19</td>
<td>Partial</td>
<td>Antarctica, western Africa</td>
<td>74% eclipsed</td>
</tr>
<tr>
<td>2004 October 14</td>
<td>Partial</td>
<td>Northern Asia, Hawaii, Alaska</td>
<td>52% eclipsed</td>
</tr>
<tr>
<td>2005 April 8</td>
<td>Annular</td>
<td>New Zealand, North and South America</td>
<td>Annular along part of path</td>
</tr>
<tr>
<td>2005 October 3</td>
<td>Annular</td>
<td>Europe, Asia, northern India</td>
<td>Maximum duration of eclipse 4h 16m 4s</td>
</tr>
<tr>
<td>2006 March 29</td>
<td>Total</td>
<td>Africa, Europe, western Asia</td>
<td></td>
</tr>
<tr>
<td>2007 March 19</td>
<td>Annular</td>
<td>South America, western Africa, Australia</td>
<td>97% eclipsed</td>
</tr>
<tr>
<td>2007 September 11</td>
<td>Partial</td>
<td>South America, Antarctica</td>
<td>73% eclipsed</td>
</tr>
<tr>
<td>2008 February 7</td>
<td>Annular</td>
<td>Antarctica, eastern Australia, New Zealand</td>
<td></td>
</tr>
<tr>
<td>2008 August 8</td>
<td>Total</td>
<td>Northern North America, Europe, Asia</td>
<td>Maximum duration of eclipse 2m 7s</td>
</tr>
</tbody>
</table>

Eclipse predictions by Fred Espenak, NASA/Goddard Space Flight Center. All dates are given in standard astronomical format year, month, day.
Ancient astronomers measured the size of the Earth and attempted to determine distances to the Sun and Moon.

- In the town of Syene, the Sun shone directly down a vertical shafts on the summer solstice.
- In Alexandria, the position of the Sun changed by 7° or about one-fiftieth of a complete circle.
- Around 200 B.C., the Greek astronomer Eratosthenes used 50 x the distance between Alexandria and Syrene to get a circumference of the earth of about 42000 km (the actual is about 40000 kilometers).

Aristarchus knew that the Sun, Moon, and Earth form a right triangle at first and third quarter phases.

- Using geometrical arguments, he calculated the relative lengths of the sides of these triangles, thereby obtaining the distances to the Sun and Moon.

Table 3.3: Comparison of Ancient and Modern Astronomical Measurements

<table>
<thead>
<tr>
<th></th>
<th>Ancient measure (km)</th>
<th>Modern measure (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Earth’s diameter</td>
<td>13,000</td>
<td>12,756</td>
</tr>
<tr>
<td>Moon’s diameter</td>
<td>4,300</td>
<td>3,476</td>
</tr>
<tr>
<td>Sun’s diameter</td>
<td>9×10^4</td>
<td>1.39×10^9</td>
</tr>
<tr>
<td>Earth-Moon distance</td>
<td>4×10^1</td>
<td>3.84×10^3</td>
</tr>
<tr>
<td>Earth-Sun distance</td>
<td>10^7</td>
<td>1.50×10^8</td>
</tr>
</tbody>
</table>
Key Words

- annular eclipse
- apogee
- eclipse
- eclipse path
- eclipse year
- first quarter moon
- full moon
- line of nodes
- lunar eclipse
- lunar phases
- new moon
- partial lunar eclipse
- partial solar eclipse
- penumbra
- penumbral eclipse
- perigee

- plane of the ecliptic
- saros
- sidereal month
- solar corona
- solar eclipse
- synchronous rotation
- synodic month
- third quarter moon
- totality
- total lunar eclipse
- total solar eclipse
- umbra
- waning crescent moon
- waning gibbous moon
- waxing crescent moon
- waxing gibbous moon