Introduction

• Syllabus
 - Online

• Grading
 - There will be 4 total examinations
 - Exam #4 is cumulative (covers whole summer).
 - Each examination will count 22.5% of your grade (90% total).
 - There will be NO make-up examinations.
 - Participation with iClickers will count 10% of your grade.
 - The ONLY extra credit is with the iClickers (extra credit is not a substitute for studying and learning the material). Up to 3 for correct answers.
Introduction

- **Textbook**
 - Universe by Freedman, Geller and Kaufmann
 - Or split edition, Universe: Stars and Galaxies by Freedman, Geller and Kaufmann

- **Auxiliary Materials**
 - Personal Response System
 - iClicker
Introduction (continued)

• Web syllabus and notes
 - Will be updated routinely; check back often

• Observing Sessions not available in the summer
 - Offered on campus in spring and fall for your learning experience and enjoyment
 - Summer - some special events

• FGK Chapters 4 & 5 Review
 - Basic ideas reviewed in this lecture
 • Read textbook and think about what is being said
Kepler’s Laws of Planetary Motion

• Kepler’s First Law of Planetary Motion
 – planets orbit sun in an ellipse with sun at one focus

• Kepler’s Second Law of Planetary Motion
 – planets sweep out equal areas in equal times

• Kepler’s Third Law of Planetary Motion
 – orbital period squared is proportional to semi-major axis cubed
 – $P^2 = a^3$

 » Requires proper units (AU and years)
Newton’s Laws of Motion and Gravity

• Newton’s First Law of Motion
 - body at rest tends to stay at rest and body in uniform motion will stay in straight line uniform motion unless acted upon by an outside force

• Newton’s Second Law of Motion
 - the acceleration of a body is proportional to the force being applied
 \[-F = m a\]
Newton’s Laws of Motion and Gravity

• Newton’s Third Law of Motion
 - for every force there is an equal and opposite force (action and reaction)

• Newton’s Law of Gravitational Attraction
 - force is proportional to masses and inversely proportional to the distance squared

\[F = \left(\frac{G m M}{r^2} \right) \]
The Electromagnetic Spectrum from Longest to Shortest Wavelengths

- Radio Waves
- Microwaves
- Infrared Radiation
- Visible Light
 - Red, Orange, Yellow, Green, Blue, Indigo, Violet (ROYGBIV)
- Ultraviolet Radiation
 - UV-A, UV-B
- X-rays
- Gamma Rays
Wien's Law

- Peak wavelength is inversely proportional to the temperature of the blackbody.
Stefan-Boltzmann Law

- Energy radiated by blackbody is proportional to the temperature to the 4th power

\[-E = \sigma T^4\]
Kirchoff’s Spectral Laws

• Kirchoff’s Spectral Laws (empirical)
 - Continuous Spectrum
 • what produces them?
 - Emission Spectrum
 • what produces them?
 - Absorption Spectrum
 • what produces them?
Kirchoff’s First Spectral Law

- Any hot body produces a continuous spectrum
 - if it’s hot enough it looks something like
 - digitally like this

```
Intensity

Wavelength
```

![Graph showing a continuous spectrum with intensity and wavelength axes](image-url)
Kirchoff’s Second Spectral Law

- A gas to which energy is applied, as heat or a high voltage, will produce an emission line spectrum like this

- or digitally like this
Kirchoff’s Third Spectral Law

• A gas placed between a continuous spectrum source and observer will produce an absorption line spectrum like this

- or digitally like this
The Photoelectric Effect

• A prelude to the Bohr atom
 - experiment explained by Einstein, but performed by others
 • what caused this strange result?
The Photoelectric Effect

• A prelude to the Bohr atom
 - experiment explained by Einstein, but performed by others
 • what caused this strange result?
Prelude to Bohr

• Einstein used Planck’s quantized particles
 - energy of photon is related to frequency of light, not intensity
 • need high enough frequency to get electrons released from metallic surface
 - $E = h f$
Bohr’s Atom

• Best described the workings of the Hydrogen atom
 - one proton and one electron “around” the proton moving in orbits that are discretized (quantized) so that no intermediate orbits are allowed

Absorption

Emission
Maxwell’s Electromagnetism

- Electricity according to Gauss
 - relates electricity to electric charge
- Faraday’s Law
 - relates electric fields to magnetic fields
- Magnetism according to Gauss
 - relates magnetism to electricity
- Ampere-Maxwell Law
 - relates magnetic field to electricity

\[
\nabla \cdot E = \frac{1}{\varepsilon_0} \rho
\]

\[
\nabla \times E = -\frac{\partial B}{\partial t}
\]

\[
\nabla \cdot B = 0
\]

\[
\nabla \times B = \mu_0 J + \mu_0 \varepsilon_0 \frac{\partial E}{\partial t}
\]

Don’t worry about notation here.
Doppler Effect

- A change in measured frequency caused by the motion of the observer or the source
 - classical example of pitch of train coming towards you and moving away
Conclusion

• To understand the stars (and our Sun is a star), galaxies, and the universe at large (cosmology) you need to understand
 - Physics
 • Forces (gravity, electromagnetic, strong, weak)
 • Matter (protons, electrons, quarks, bosons, etc.)
 • Theories, Laws and Effects
 - Newton’s, Kepler’s, Kirchoff’s, Stefan-Boltzmann, Doppler, Photoelectric, Relativity, etc.
 - Chemistry
 • Atoms, elements, molecules and their models (e.g. Bohr)
 - And even a little biology for SETI