

Fourier Series and Fourier Transforms

1 Fourier Series

A function $f(t)$ which is periodic and “well-behaved”\(^1\) may be represented by a Fourier series:

$$f(t) = a_0/2 + \sum_{n=1}^{\infty} (a_n \cos(n\omega t) + b_n \sin(n\omega t))$$

The coefficients a_n and b_n are found from $f(t)$ via

$$a_n = \frac{2}{T} \int_0^T f(t) \cos(n\omega t) dt$$

$$b_n = \frac{2}{T} \int_0^T f(t) \sin(n\omega t) dt$$

where T is the period, and $\omega = 2\pi/T$.

The function $f(t)$ is thus identical to a set of harmonic waves, with amplitudes a_n and b_n for the sine and cosine waves of the “nth” harmonic. We could also represent the sine and cosine waves as a single harmonic wave of amplitude c_n and phase ϕ_n; i.e.

$$a_n \cos(n\omega t) + b_n \sin(n\omega t) = c_n \cos(n\omega t + \phi)$$

where

$$c_n = \sqrt{a_n^2 + b_n^2}$$

and

$$\tan \phi = \frac{-b_n}{a_n}$$

2 Complex Fourier Series

There is a complex representation of the Fourier series:

$$f(t) = \sum_{n=-\infty}^{\infty} d_n e^{in\omega t}$$

where d_n is a complex number, related to the a_n and b_n by

$$d_n = \frac{a_n - ib_n}{2} \quad n \geq 0$$

$$d_n = \frac{a_n + ib_n}{2} \quad n < 0$$

\(^1\)The function must be single-valued; the function and its first derivative must be piecewise continuous.
The magnitude of d_n is
\[|d_n| = \frac{1}{2} \sqrt{a_n^2 + b_n^2} \]

It is determined from $f(t)$ via
\[d_n = \frac{1}{T} \int_0^T f(t) e^{-i\omega t} dt \]

As a simple example, consider
\[f(t) = \sin(\omega t) \]

Then $a_n = 0$ for all n, $b_1 = 1$, other $b_n = 0$, $d_1 = -i/2$ and $d_{-1} = +i/2$. As another simple example, consider
\[f(t) = \cos(\omega t) \]

Then $b_n = 0$ for all n, $a_1 = 1$, other $a_n = 0$, $d_1 = +1/2$ and $d_{-1} = +1/2$.

3 Fourier Transform

The frequency spectrum of a periodic function, extending from $-\infty$ to $+\infty$, is discrete. However, the frequency spectrum of "pulse", i.e., a function which is constant or zero everywhere except over a finite time interval, is not discrete. It is represented by a continuous frequency spectrum function $g(\nu)$. The generalization of Equation 1 for this case can be shown to be
\[f(t) = \int_{-\infty}^{\infty} g(\nu) e^{i2\pi\nu t} d\nu \]

where the frequency spectrum function, $g(\nu)$ is
\[g(\nu) = \int_{-\infty}^{\infty} f(t) e^{-i2\pi\nu t} dt \]

(2)

The function $g(\nu)$ is also called the Fourier Transform of $f(t)$. Equation 2 is also written in terms of the angular frequency ω. The above form has the advantage of having no extra normalization constant. Just as the sum in Equation 1 extends from $-\infty$ to $+\infty$ the parameter ν extents over the same range. For positive values, we may identify ν with the physical frequency.

3.1 Fourier Transform of a Rectangular Pulse

Let’s find the Fourier transform of a rectangular pulse of total width T and height A. Suppose the pulse starts at $-T/2$ and ends at $+T/2$, as shown in Figure 1.

Then, since the function $f(t)$ is zero elsewhere, the integration limits in Equation 2 may be taken to be $-T/2$ and $T/2$, so the Fourier transform becomes
\[g(\nu) = \int_{-T/2}^{T/2} A e^{-i2\pi\nu t} dt \]

(3)
\[= \frac{-A}{i2\pi\nu} \left[e^{-i2\pi\nu \frac{T}{2}} - e^{+i2\pi\nu \frac{T}{2}} \right] \]
\[= \frac{A \sin(\pi\nu T)}{\pi\nu} \]

(5)
This plotted in the Figure 2 below.

In general $g(\nu)$ is complex; in this particular case it is real. The spread in frequency can be taken to be approximately the distance from the origin to the first zero of $g(\nu)$. The first zero, at ν_1, occurs when the argument of the sine function is π, i.e.

$$\pi \nu_1 T = \pi$$

or

$$\nu_1 = \frac{1}{T}$$

If we designate the spread in frequency by $\Delta \nu$ and the spread in time of the pulse by Δt, then the above equation becomes

$$\Delta \nu \Delta t \approx 1$$

This means, generally, that the smaller the pulse width, the larger the range of frequencies it “contains”.

3.2 Fourier Transform of a Wave Train

As another example, consider a monochromatic wave train of finite duration:

$$f(t) = \begin{cases}
 A \cos(2\pi \nu_0 t) & |t| < T \\
 0 & |t| > T
\end{cases}$$

Figure 3 shows a graph of an example of such a train.

One might, at first, think the Fourier transform of a single-frequency should contain only that frequency, i.e. $g(\nu)$ should be a single peak at ν_0. This is actually not the case, as we will
Figure 2: The Fourier transform of a rectangular pulse. The total pulse width is 1.0 time units,

see by calculating the transform:

\[
g(\nu) = \int_{-T}^{T} A \cos(2\pi \nu_0 t) e^{-i2\pi \nu t} dt
\]

We now “elevate” the cosine term, giving

\[
g(\nu) = \frac{A}{2} \int_{-T}^{T} [e^{i2\pi \nu_0 t} + e^{-i2\pi \nu_0 t}] e^{-i2\pi \nu t} dt
\]

We have already performed this type of integral in the previous example. The answer is:

\[
g(\nu) = AT \left[\frac{\sin(2\pi (\nu - \nu_0) T)}{2\pi(\nu - \nu_0) T} + \frac{\sin(2\pi (\nu + \nu_0) T)}{2\pi(\nu + \nu_0) T} \right]
\]

This is plotted in Figure 4.

The function \(g(\nu)\) peaks sharply at \(\nu = \pm \nu_0\). It is evident that there are some frequencies present which are near but not exactly equal to \(\pm \nu_0\). Using arguments similar to those made above, the frequency spread, defined as the frequency interval from the peak, at \(\nu_0\), to the nearest zero, is

\[
\Delta \nu = \frac{1}{2T}
\]

where \(2T\) is the total duration of the waveform. Only if the waveform is infinite in duration is the wave “pure”, i.e. has a single frequency in its spectrum.
3.3 Effect of Time Translation

A useful theorem concerns the effect on a Fourier transform of shifting the waveform in time. Suppose a pulse waveform has the form

\[f(t) = p(t - t_0) \]

Then increasing \(t_0 \) simply “slides” the waveform, to the right, along the \(t \) axis. The Fourier transform of this function can be related to the transform of \(p(t) \). Changing variables from \(t \) to \(z = t - t_0 \), we have

\[
\begin{align*}
 g(\nu) &= \int_{-\infty}^{\infty} p(t - t_0) e^{-i2\pi \nu t} dt \\
 &= \int_{-\infty}^{\infty} p(z) e^{-i2\pi \nu z} e^{-i2\pi \nu t_0} dz \\
 &= g_0(\nu) e^{-i2\pi \nu t_0}
\end{align*}
\]

in which \(g_0(\nu) \) is the Fourier transform of the unshifted pulse. So the effect of a time translation is to make a frequency-dependent phase shift of each Fourier component. However, since the magnitude of the factor in the above equation is 1, the magnitude of the transform is unchanged, i.e.

\[|g(\nu)| = |g_0(\nu)| \]
Figure 4: The Fourier transform of an harmonic wave train. The frequency is 10 /unit time and the total wave train duration is 2 units of time.

4 Discrete Fourier Transform

The Discrete Fourier Transform (DFT) is used to find the frequency components of a set of sampled values of a waveform. We assume that the waveform $f(t)$ is sampled N times, with the same time interval Δ, between each sample. Then the set of waveform samples, $h(t_k) = h_k$ determines the DFT, $H(\nu_n) = H_n$ through the equation

$$H_n = \Delta \sum_{k=0}^{N-1} h_k e^{-2\pi i k n / N}$$

with the inversion

$$h_k = \frac{1}{N \Delta} \sum_{n=0}^{N-1} H_n e^{2\pi i k n / N}$$

These equations are unlike both the Fourier Series and the Fourier Transform. If, as is frequently the case, the h_k are known, then the set of H_n are completely determined by the above equations. However, the DFT is not an approximating function for representing either $h(t)$ or $H(\nu)$ between the discrete values of t or ν. Note that Equations 13 and 14 do not explicitly contain either t or ν.

The N samples of the function $f(t)$ yield the DFT at N discrete frequencies. They are determined by the Nyquist critical frequency, ν_c:

$$\nu_c = \frac{1}{2\Delta}$$
The frequencies range from \(-\nu_c\) through 0 (DC) to \(+\nu_c\). The ordering of the frequencies with the index \(n\) is given in the following table

<table>
<thead>
<tr>
<th>Index</th>
<th>Frequency</th>
<th>Example: (N = 16, \Delta = 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>(1 \times \frac{1}{N\Delta})</td>
<td>(1/16)</td>
</tr>
<tr>
<td>2</td>
<td>(2 \times \frac{1}{N\Delta})</td>
<td>(2/16)</td>
</tr>
<tr>
<td>(N/2)</td>
<td>(\frac{N}{2N\Delta} = \nu_c, -\nu_c)</td>
<td>(8/16, -8/16)</td>
</tr>
<tr>
<td>(N/2 + 1)</td>
<td>(-\nu_c + \frac{1}{N\Delta})</td>
<td>(-7/16)</td>
</tr>
<tr>
<td>(N/2 + 2)</td>
<td>(-\nu_c + \frac{1}{N\Delta})</td>
<td>(-6/16)</td>
</tr>
<tr>
<td>(N - 1)</td>
<td>(-\nu_c + \frac{N\Delta}{N\Delta})</td>
<td>(-1/16)</td>
</tr>
</tbody>
</table>

In general \(H(\nu_n)\) is complex; it may be reported as separate real and imaginary components, or as a magnitude and a phase. It is also possible for \(h(t_k)\) to be complex.